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Abstract

We propose a method that combines the paradigms of Column Generation (CG) and Iterated Local
Search (ILS) to solve the Capacitated Arc-Routing problem. One of the goals is to integrate into the
ILS (some of) the duality information that underpins the CG. We consider a space of permutations
and sub-permutations (sequences) of the set of required edges

[
1..m

]
. This space is explored by an

ILS process and a CG process that run in parallel and that can repeatedly exchange sub-permutations.
The ILS uses an exact decoder that maps any permutation s :

[
1..m

]
→

[
1..m

]
to a list of sequences

(routes) of minimum cost that services
[
1..m

]
in the order s(1), s(2), . . . , s(m). The first use of the CG

paradigm in ILS is the following: all sequences discovered by the CG process are sent to the ILS process
that can inject them into the current ILS solution. The second application of CG in ILS consists of a
“CG improver” that starts from the current ILS solution and tries to improve it by running several CG
iterations. The first half of the paper describes the proposed method in a general framework based on
sequences, permutations and set covers. The second part is devoted to more specialized Arc-Routing

techniques. For instance, the CG convergence could be accelerated by factors of tens or even hundreds
by exploiting two ideas in the Dynamic Programming (DP) pricing: (i) avoid as much as possible to
traverse edges without service before the end of the CG process, and (ii) detect and prune dominated DP
states by recording them in a fast data structure that relies on an array and a red-black tree. Regarding
the ILS, we show that the permutation-level search can be substantially improved if the exact decoder is
reinforced with a deterministic post-decoding operator that acts on explicit routes. The overall results
are competitive (reducing the best-known gap of five instances) and certain ideas could be potentially
useful for other set-covering or permutation search problems.
Keywords Column Generation, Iterated Local Search, Arc Routing

1 Introduction

Given a graph (street network) and a set of required edges (streets) ER =
[
1..m

]
, the Arc-Routing Problem

(ARP) asks to find a set of routes of minimum cost that service each edge of ER. The Capacited ARP (CARP)
is a well-known variant in which the amount of service provided by each route is bounded by a maximum
capacity Q. Historically, the first model related to Arc-Routing dates back to the well-known “Seven Bridges
of Konigsberg” problem proposed by Euler in the 18th century. This problem can be stated using the ARP
terminology: can one travel along (service) the seven bridges (edges) of a city without traversing any bridge
twice (without dead-heading)? However, modern applications of Arc-Routing go far beyond the scope of
this question, spanning a variety of fields, e.g., electric and rail line inspection, postal delivery, meter reading,
road winter gritting, waste collection, street cleaning, cattle feeding logistics, etc. The reader whose curiosity
is piqued can relate to ARP surveys [11, 34]. for more applications and references.

To ease the exposition, we will first describe our CARP method in a Permutation Set-Covering framework,
i.e., as a method for solving problems of the following form: minimize the cost needed to cover a ground
set

[
1..m

]
with sub-sets associated to sequences of

[
1..m

]
, e.g., vehicle routes, crew schedules, commodity
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paths, etc.—see Definition 1 below. Regarding the exact methods, such problems are often tackled by Column
Generation (CG) or branch-and-cut-and-price, because the number of feasible sequences can be prohibitively
large. Regarding the (meta-)heuristic algorithms, they usually address such problems by searching through
a space of permutations using permutation-specific operators [9].

While CARP received less attention than the Vehicle Routing Problem (VRP), the edge focus of CARP
is very useful when the demands are located on edges rather than on vertices. A relatively straightforward
approach for solving CARP on a graph G consists of applying a VRP algorithm on the line graph of
G [20, 2, 23]. As already argued in the literature (see [6] or [19, §2.1]), this approach has significant drawbacks
(e.g., inherent symmetry, dense complementary graphs, huge number of vertices), and so, specialized CARP
methods do merit serious consideration. Given the numerous applications of CARP and its particular
structure, there has been an increasing interest and sophistication in pure CARP methods. We hereafter
focus on such “VRP-free” algorithms. From a heuristic perspective, the following general methodologies
have already been applied: tabu and scatter search [15, 14, 7, 24], variable neighborhood search [16, 26],
iterated local search [29], guided local search [5], memetic and population-based methods [17, 18, 32, 12].
The exact algorithms often rely on solving integer programs using branch-and-cut or branch-and-bound
combined with CG [4, 19, 3, 6, 21, 22, 27]. Important progress has been made during the last few years:
recent algorithms [3, 6] could solve to optimality many instances with up to m = 190 clients (edges to service)
and a capacity Q ∈ [5, 600].

However, upper bounds for large-scale CARP (m > 200 and Q ∈ [10000, 30000]) have only been reported
by Local Search (LS) [7, 23, 24]. For such instance sizes, a promising approach could be to combine a
relatively lightweight LS with other meta-heuristics paradigms of well-acknowledged potential. For example,
given a starting Iterated Local Search (ILS), it could be promising to extend it to a population-based memetic
algorithm, i.e., a genetic algorithm incorporating LS. The potential of population-based methods to improve
stand-alone LS algorithms is long-acknowledged in Arc-Routing [17, 18, 32, 12], as well as in many other
problems [28, 13, 25]. However, this paper combines an ILS with the paradigm of CG. One wonders if
the advantages of population-based methods could also be realized (or surpassed) by CG techniques. A
challenging aspect of this work was to accelerate the CG pricing, so as to make the CG process reach a speed
comparable to that of the LS, especially for instances with m > 200 and Q > 10000.

We aim at enriching the ILS with sequences coming from CG, and so, to make the ILS take profit from
the dual nature of the clients [1..m]. Technically, we can interpret this idea as follows. Consider the current
ILS solution s as a concatenation of sequences (routes) with different costs. When these sequences are used
as columns in the CG model, the dual variable yi of any i ∈ [1..m] actually represents a dual cost of client i,
i.e., its contribution to the cost of s. The dual variables yi (with i ∈ [1..m]) actually guide the CG process:
at each CG iteration, the CG searches for a new sequence (route) that services clients I ⊂ [1..m] at a lower
cost than at their current total dual cost

∑
i∈I yi.

The resulting method, hereafter called CG-P-ILS (CG-Permutation-ILS), uses a CG process and a CG
improver that interact with the ILS process by exchanging sequences of elements of

[
1..m

]
. More exactly, the

CG process runs in parallel with the ILS process and acts upon it by repeatedly communicating sequences
(routes) constructed by CG pricing. These sequences can be inserted in the current ILS solution during the
ILS perturbation phase. In a general sense, these CG-constructed sequences play the role of the offspring
solutions generated by crossover in memetic algorithms, i.e., they enrich the local search with “external
information” and increase diversity. The CG improver is a CG-based operator that can be applied on a
primal ILS solution s to (try to) produce an improved primal solution. For this, it constructs an initial
restricted master program from the columns (sequences) that compose s, generates new sequences by CG
pricing, and progressively rounds master variables until all elements of [1..m] are covered. After several CG
iterations, this leads to a potentially improved primal solution that can replace s in the ILS process.

In the rapidly emerging math-heuristic literature, this CG-ILS hybridisation might seem to be a relatively
classical approach at a first glance. However, it does not exactly fit in any of the widely-used math-heuristic
typologies presented, for instance, in the recent vehicle routing survey [1]. The most related cited math-
heuristics classes:1(a) the use of exact methods as operators inside meta-heuristics (local optimization), and

1Generally speaking, the other classes discussed in [1] are: decompositions of complex integrated problems into subproblems

3



(b) CG with a restricted set of columns constructed heuristically (restricted master heuristics). Our method
does not really fit in the class (a), because the CG process is not merely an operator inside the ILS. The main
CG process is intertwined with the ILS process: these processes run in parallel and they can continually
communicate. On the other hand, the CG improver does clearly belong above class (a), because it is an
operator inside the ILS. It can also be seen as “restricted master heuristic” of class (b), because it does not
fully converge and it starts from columns constructed heuristically (by ILS).

The paper organization is incremental and all CG-P-ILS operators are gradually introduced according to
their level of CARP specificity. As such, Section 2 starts out by presenting our CG and ILS algorithms in
a Permutation Set-Covering framework. The CARP is formally presented in Section 3, where we slightly
customize the set-covering CG model and the ILS process (Sections 3.2 and 3.3), essentially only using
notions of edge sequences and permutations. The second half of the paper is devoted to more specific
CARP notions. Section 4 recalls the sparsity-exploiting scheme from [19] and presents the new acceleration
techniques, e.g., avoid as much as possible to produce routes with edges traversed without service. Section 5
is devoted to the transformation of permutations into CARP solutions: we first use an exact decoder, followed
by a deterministic post-decoding operator that applies faster route-level operations. We present numerical
results and comparisons in Section 6, followed by conclusions in the last section. Additionally, we provide in
appendix more details on: the numerical results (App. A), the ILS neighborhood and parameters (App. B),
the CG cycling avoidance techniques (App. C); we finally give a small decoder example (App. D).

2 CG-P-ILS: Algorithmic Template for Permutation Set-Covering

We first present the main building blocks and definitions (Section 2.1), followed the CG-P-ILS pseudo-code
(Section 2.2), finishing with a more detailed analysis of the CG-ILS interaction (Section 2.3).

2.1 General CG and ILS for Permutation Set-Covering

Definition 1. (Permutation Set-Covering) Given a ground set
[
1..m

]
, a permutation set-covering problem

requires selecting a number of sequences r =
(
r1, r2, . . . , r|r|

)
with r1, r2, . . . , r|r| ∈

[
1..m

]
such that each

i ∈
[
1..m

]
arises in at least one sequence. The set of feasible sequences is typically described implicitly,

e.g., as vehicle routes, crew schedules, paths of commodities, etc. Each sequence has a given cost that can
represent a distance, a schedule delay, etc. The goal is to minimize the total cost of the selected sequences.

To each feasible sequence r, we associate an incidence vector a (also noted ar) such that ai is 1 if ai
arises in r or 0 otherwise, as well as a cost ca (also noted cra). Let us note A the set of (prohibitively-many)

columns of the form

[
ca
a

]
associated to such sequences. We associate to each column a master variable xa

that indicates the selection status of the underlying sequence. In the initial ILP formulation, these decision
variables need to be binary and, after linear relaxation, we obtain the following primal-dual model.

min
∑
caxa

y :
∑
aixa ≥ 1, ∀i ∈ [1..m]

xa ≥ 0 ∀
[
ca
a

]
∈ A

(2.1a)

max 1>my

x : a>y ≤ ca, ∀
[
ca
a

]
∈ A

y ≥ 0m

, (2.1b)

where all the sums are carried out over all columns

[
ca
a

]
∈ A.

This is actually the classical CG model for general Set-Covering with no ordering notion. It could be
used even if the columns would not be associated to sequences, but with subsets of [1..m]. In many cases,
there are prohibitively-many columns that are typically generated one-by-one (see below) by solving the
pricing CG sub-problem. However, our CG process does not completely forget the permutation nature of
the sequences generated by pricing, because it actually sends full sequences to the ILS process.

that can be solved exactly (e.g., cluster-first route-second); one-shot applications of integer programs to improve solutions
reported heuristically; heuristic rounding of relaxed solutions generated by CG, and CG heuristic branching.
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We briefly recall the main CG ideas. A CG process starts out by optimizing a restricted master problem
with relatively few initial columns. In the CARP-customized CG-P-ILS, the initial columns come from the
pool P of the high-quality sequences generated by the first ILS iterations. However, for any given set of
initial columns A′ ⊆ A, the classical CG algorithm optimizes the above primal-dual programs (2.1a)-(2.1b)
as follows: (i) find an optimal primal-dual solution considering only the current set of columns A′ ⊆ A;
(ii) given the current dual solution y, solve the pricing sub-problem min[ca a]>∈A(ca − a>y) to search for a
negative reduced cost column (violated dual constraint); (iii) if this reduced cost is strictly negative, add the
corresponding column to A′ and repeat from (i), or otherwise report optimality.

Regarding the heuristic component of CG-P-ILS, it relies on a classical Iterated Local Search framework
acting in the space of permutations. To be specific, each ILS iteration consists of the following general
steps: (i) generate and evaluate one by one the neighbors of the current solution s; (ii) replace the current
permutation s with the best (or the first improving) neighbor; (iii) if a stagnation condition is met, apply
a perturbation on the current solution. This last perturbation step is the main particularity of the ILS
framework. Its goal is to make the search process move (“iterate”) to a different search space area, so as
to avoid stagnating or looping on local optima and plateaux. Our perturbation strategy relies on a pool P
of high-quality sequences that can come either from primal solutions discovered via ILS or from sequences
generated by CG pricing (see below). When a stagnation condition is detected, CG-P-ILS selects a sequence
r = (r1, r2, . . . , r|r|) from P and simply perturbs the current solution s as follows: insert r1, r2, . . . , r|r| at
the beginning of s and remove all other occurrences of r1, r2, . . . , r|r| from s.

Our ILS also uses a second (stronger) perturbation operator (see also Step 3 of the ILS pseudo-code in
Algorithm 1). This is carried out by the CG Improver and it is devoted more difficult situations of recurrent
looping. We describe both perturbation types in greater detail in Section 2.3.

2.2 The General CG-P-ILS Pseudo-code

Algorithm 1 Algorithmic template of CG-P-ILS

Main Column Generation process

do
1. optimize the current (restricted master)

CG program and obtain dual vector y
2. r,ar, cra ← pricing(y) . find a new sequence r (incidence vector ar, cost cra)

3. add column

[
cra
ar

]
to the current CG program

4. P ←insert-sequence(P, r) . (try to) add sequence r to pool P
while a negative reduced cost column is found
return lb =optimum determined at Step 1

Iterated Local Search process: . This process also launches the above CG process in parallel

do
1. repeat

– s←select-neighbor(s) . s is the current solution (permutation)
– ub← min(ub,obj-value(s))
– P ←insert-sequences(P, s) . it tries to insert the best sequences from s

until a stagnation condition is detected
2. s← perturb(s,P) . insert a sequence from P at the beginning of s
3. if recurrent looping detected,

– s←CG-Improver(s) . (try to) improve s via CG, see Section 2.3.2

while a stopping condition is not met
return ub
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Algorithm 1 provides the algorithmic template of CG-P-ILS: it basically consists of a CG and an ILS
process that run in parallel and that interact as follows. The sequences generated during the CG process
can be inserted in a pool P of high-quality sequences shared with the ILS process (see Step 4 of the CG
process in Algorithm 1). The ILS perturbation operator (Step 2 of the ILS process) retrieves such a sequence
r =

(
r1, r2, . . . r|r|

)
from P and inserts r1, r2, . . . r|r| at the beginning of the current permutation s (removing

all other existing occurrences of r1, r2, . . . r|r| from s). While this operation might seem to have disruptive
nature, it actually tries not to break the highest-quality blocks (sequences) that compose good solutions. Its
design uses similar principles as crossover operators in genetic algorithms. For instance, the pool P tries to
preserve the best sequences in the same way a population tries to preserve the best blocks or the best parts
of solutions (e.g., color classes in graph coloring [13]). To avoid inserting very similar elements into P, we
will use distances between sequences as in spacing memetic algorithms [28].

The second application of the CG paradigm in ILS is represented by the call s←CG-Improver(s) in Line
3 of the ILS process (Algorithm 1). The goal of this “CG Improver” is to (try to) improve the current ILS
primal solution s using a new shorter CG process that essentially performs the following steps. It takes
as input the sequences that compose the primal solution and uses them as columns to build an initial CG
program. This allows it to start out with a reasonable primal-dual solution with integer primal values. The
dual value of an element i ∈

[
1..m

]
can be seen as the contribution of i to the cost of s. Guided by these

dual values, the pricing constructs a new sequence and the CG improver performs several CG iterations.
Gradually, the largest primal values of the new generated sequences are fixed to 1 after each iteration,
enforcing their selection. When these selected sequences cover [1..m], the CG improver concatenates them
and returns a (potentially improved) primal solution—a description of greater detail is given in Section 2.3.2.

The interaction between the CG and ILS processes is also summarized in Figure 1 below.

Main ILS Loop

Perturbation
OperatorPool P

sen
d curr.

sol. sMain CG Loop

Pricing
Algorithm

send

best columns

CG Process ILS Process

Initial CG
Program

Short CG Loop &
Primal Rounding

CG Improver

send the sequences

that compose s
send

CG-improved solution

send

best sequences

send all sequences

Figure 1: Summary of the interactions of the ILS process with the CG process and the CG improver.

2.3 The CG-ILS Interaction: Using CG information in ILS

We here describe in greater detail how: (i) the sequences inserted by the main CG process in P are used
to perform standard perturbations (Section 2.3.1), and (ii) the CG improver executes several CG steps to
perform stronger perturbations (Section 2.3.2).

2.3.1 Standard Perturbations Using CG-generated Sequences

As hinted above, the sequences generated by CG pricing can be inserted in the pool P, so as to later inject
them into the current ILS solution s (perturbation phase). In fact, this pool P is continually updated by
adding sequences discovered both by CG or ILS. Each new sequence r is evaluated by a heuristic cost function
that assesses its potential for contributing to high-quality full permutations. If a pool size limit is reached,
an insertion of r would trigger the removal of a sequence with low heuristic cost. A reasonable heuristic cost
function would favor a sequence r that contains some i ∈

[
1..m

]
covered by very few other P sequences.

It could naturally take into account the similarity between r and the existing P elements; for instance, we
forbid inserting the same sequence twice. We also forbid the complete removal of all CG-produced sequences.
However, the CARP-customized heuristic cost function is described in greater detail in Section 3.3.3.2.
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We still need to provide the technical stagnation condition: the perturbation is triggered after a number
of iterations with no objective function variation. The value of this number can evolve depending on the
status of the search (e.g., the quality of the current solution compared to the best visited solution), but such
customization aspects are provided in Section 3.3.3 (see also Appendix B.2 for the parameter setting).

2.3.2 The CG Improver: Stronger Perturbations

In certain cases, the standard perturbation operator is not strong-enough to make the ILS process evolve
to a really new area of the search space. A few iterations after applying a classical perturbation, the ILS
can actually return to previously visited area. Such situations indicate a recurrent looping state and we will
later provide (Appendix B.2) CARP-customized conditions for detecting it. For now, it is enough to say
that such a looping situation makes CG-P-ILS launch the CG improver on the current solution s. The goal
is to exploit (some of) the dual information that underpins the non-stagnant nature of CG.

Starting from current permutation s, the CG improver performs several iterations to try to produce a
higher quality solution snew. The approach is inspired by the fixing-releasing CG heuristic from [8, §4].
More exactly, we first build an initial CG primal program (3.1.a) filled with the columns associated to the
sequences that compose s. The new permutation snew is initially empty and we construct it as follows:

(a) run a series of nrPiv non-degenerate pivots, i.e., run a CG process until it generates nrPiv columns
that do increase the objective value, where nrPiv is a parameter (fixed in Section 3.3.3.1 for CARP).

(b) fix to 1 the highest primal value associated to a column in the current master program. The sequence
(r1, r2, . . . r|r|) associated to this column is concatenated to the new permutation snew. The next calls
of point (a) above will only look up columns that service no element of {r1, r2, . . . r|r|}.

By iteratively applying the above steps, the fixed (integer-valued) columns progressively cover the set
[1..m]. Since each new pricing sub-problem takes into account only the as-yet-uncovered elements of [1..m], we
gradually reduce the sub-problem size. If the whole set [1..m] can be covered this way, the new permutation
snew is fully constructed. Otherwise, the CG improver stops when there is no negative reduced cost column
only composed of uncovered elements of

[
1..m

]
; in this case, snew is constructed by concatenating the

generated columns, followed by the uncovered elements in their initial order in s.

3 CG-P-ILS: Arc-Routing Customization

3.1 Arc-Routing Definitions

We consider an input graph G = (V,E) with n = |V | and a set ER =
[
1..m

]
⊆ E of required edges that

need to be serviced. We use a function d : V × V → {R+,∞} such that d(u, v) is the length of edge {u, v}
if {u, v} ∈ E, or d(u, v) = ∞ if {u, v} /∈ E; by slightly abusing notation, the length of edge i ∈ E can also
be noted di. If i ∈ ER, then edge i also requires a service (supply) amount of qi. A feasible route r is a walk
in G that starts and ends at a special depot vertex vdep and that provides a service (supply) of maximum
Q to a sequence of required edges. The cost of a route is given by its total length, including both serviced
serviced and non-serviced (dead-headed) edges. We consider we can only use a fleet size of k vehicles. The
goal is to provide a service of qi to each i ∈ ER using at maximum of k feasible routes such that the total
cost (travelled distance) is minimized.

3.2 Customizing the CG Model

The CARP customization of the CG algorithm simply consists of incorporating a fleet size constraint in the
CG formulation from Section 2.1. Specifically, we add a primal constraint limiting the number of selected
routes to k, along with the associated dual variable µ; as such, the formulation (2.1a)-(2.1b) evolves to:
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min
∑
caxa

y :
∑
aixa ≥ 1, ∀i ∈ [1..m]

µ :
∑
xa ≤ k

xa ≥ 0 ∀
[
ca
a

]
∈ A

(3.1a)

max 1>my − kµ

x : a>y − µ ≤ ca, ∀
[
ca
a

]
∈ A

y ≥ 0m
µ ≥ 0

, (3.1b)

In the CARP-customized CG, the initial columns come from the routes inserted by the ILS process
into the sequence pool P. We start the main CG process when the size of this pool is sufficiently large.
The CARP pricing sub-problem asks to find a route r such that the associated column [cra ar]> minimizes
ca + µ− a>y over all feasible columns [ca a]> ∈ A. The sub-problem input consists of dual variables y and
µ. If the resulting minimum value is strictly negative, column [cra ar]> violates a dual constraint, and so,
we add it to the current set of columns. The Dynamic Programming (DP) pricing is presented in Section 4,
along with new acceleration techniques. These techniques can accelerate the pricing by orders of tens, which
is particularly relevant for (the Step 3 of) the ILS process in Algorithm 1, because the CG improver acts as
a blocking operator in the ILS.

3.3 CARP Customization of the ILS

The CARP customization mainly concerns three aspects: the solution evaluation, the neighborhood structure
and the perturbation operator. We first address the solution evaluation: since CARP is not an explicit per-
mutation problem, we need to use tour-splitting decoding techniques to map permutations s : [1..m]→ [1..m]
into explicit solutions (Section 3.3.1). Secondly, we propose a CARP-specialized neighborhood constructed
by pruning non-interesting neighbors from a very general permutation neighborhood (Section 3.3.2). Thirdly,
we discuss in greater detail the perturbation operator and its relation to the CG, i.e., the use of the CG
improver and the construction of the pool P shared with the main CG process (Section 3.3.3)

3.3.1 Evaluating Permutations via Decoding and Post-decoding

Given a permutation noted s = (s1, s2, . . . sm), the decoder returns a set of routes of minimum total cost
that services ER in the order s1, s2, . . . sm. We use a Dynamic Programming (DP) scheme that extends
classical decoders for permutations with orientations (with a traversal sense for each edge). We will fully
describe our DP scheme in Section 5.2, but for now it is enough to say that it uses O(m ·maxr∈s(|r|)) DP
states, where maxr∈s(|r|) is the maximum number of serviced edges in a potential route that can result from
decoding s. Our decoder has the same complexity as other decoders of permutations with orientations, i.e.,
O(m · maxr∈s(|r|)) if the number of vehicles is not taken into account or O(m · maxr∈s(|r|) · k) otherwise
(see Section 5.2.3.

The resulting explicit solution can be further improved by a deterministic post-decoding operator. We
will fully describe this operator in the CARP-customized Section 5.3, but its main idea is to scan all pairs of
(sequences of) edges and to try to apply on each of them different route transformations that can be calculated
locally, e.g., swap two edges without modifying the rest of the route. Such route transformations can be
calculated in O(1), significantly more rapidly than by modifying s and decoding. If the input permutation is
modified during this post-decoding, then current ILS solution takes the value of the modified permutation.

Finally, we mention a CARP-specific issue that should not be overlooked when one only has a limited
fleet size k. For low-quality permutations s, it might not be possible to service all required edges in the order
s1, s2, . . . sm only using k routes. In such cases, the objective value of s takes the value of an infeasibility
penalty plus the minimum non-loadable quantity, i.e., the minimum amount that can not be serviced. We
say that such permutations belong to the penalized search space. The neighbor set is the same and the ILS
iterations are performed in the same manner, but the decoder can be faster (Remark 3, Section 5.2.3). The
post-decoding operator behaves as a heuristic with a bin-packing objective, i.e., it swaps elements of s so as
to make all routes reduce their unused capacity (Remark 4, Section 5.3).
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3.3.2 A Specialized CARP Neighborhood from a Generic Permutation Neighborhood

We construct a restricted (CARP-focused) neighborhood from the most promising neighbors of a complete
neighborhood NC based on generic permutation operations. Given the current solution s = (s1, s2, . . . sm),
NC(s) is defined as the set of all permutations s′ that can be reached from s by applying any of the following:

consecutive sequence swap Given any i ≤ j < `, this operation consists of swapping sequence (si, si+1, . . . sj)
with sequence (sj+1, sj+1, . . . s`). Considering all feasible values of i, j, ` ∈ [1..m], the complete neigh-
borhood contains O(m3) sequence neighbors.

swap Given any i < j, swap si and sj . These transformations can produce O(m2) swap neighbors.

This set of neighbors is actually generated in a first-improvement manner: the above transformations are
tried iteratively until a first strictly improving neighbor is found. As such, the swap neighbors are always
generated after the sequence neighbors—only if there is no sequence neighbor that strictly improves s. This
order choice proved to have a certain importance on the practical effectiveness of the search. However, this
complete neighborhood can be too large: it is not always computationally viable to iteratively generate
O(m3) neighbors and to apply a decoder and a post-decoder on each one.

As hinted above, CG-P-ILS actually relies on a restricted version of this neighborhood and we use four
reduction (pruning) techniques for this purpose. First, for m > 100, we only generate sequence neighbors
with ` = m, so as to reduce the neighborhood size to O(m2). We also pre-evaluate all permutations in
NC(s) with a fast heuristic function and prune all neighbors with very distanced consecutive edges. All
these techniques described in greater detail in Appendix B.1.

3.3.3 The ILS-CG Interaction: CG Improver and Perturbation Pool Updating

We recall the two tools for improving diversity in the ILS: the classical perturbation operator (for avoiding
local optima) and the CG improver (for addressing more difficult recurrent looping). We first discuss the
CG Improver (Section 3.3.3.1), followed by the classical perturbation (Section 3.3.3.2).

3.3.3.1 Escaping Recurrent Looping Using CG CG-P-ILS triggers a standard perturbation after a
number of iterations with no objective function variation. However, in certain cases, the standard pertur-
bation can not really lead to a sustainable diversity. The ILS search can also enter a “recurrent looping”
state that can be described by the following repetitive behaviour. After perturbing a solution s, the cost of
the current solution increases for a few iterations but it rapidly decreases afterwords to a cost comparable
to f(s)—see Appendix B.2 for more technical conditions and exact parameters.2

For now, it is enough to say that we try to avoid such looping by exploiting the non-stagnant nature of
CG, i.e., we apply on the current solution s the CG improver described in Section 2.3.2. The only CARP
specialization of this permutation-level operator is the fact that we use nrPiv = m/5 CG steps to generate
each route. The solution snew returned by the CG improver replaces s only if f(snew) < 1.5f(s). While this
CG improver could be used more frequently, one should be aware it is a blocking operator in the ILS and it
can slow down the search.

3.3.3.2 Perturbation and Pool Diversity To perturb the current permutation s, we extract a se-
quence r from the sequence pool P, we inject r at the beginning of s and we remove from s any duplicate
element of r. The pool P is continually updated throughout the search, by adding routes from primal ILS
solutions or from routes constructed by CG pricing. To manage P, we need to address two aspects:

deciding which routes to insert into P Each new route r discovered by CG or ILS is assigned a heuristic
cost determined from the classical cost cr and the similarity between r and other routes from P. The
similarity sim(r, r′) is calculated as the number of edges i, j ∈ ER that arise on consecutive positions
in both sequences r and r′. The heuristic cost of r is given by the value cr, plus a penalty below:

2Once such looping is detected, one can try many techniques to overcome it. As such, we also execute an iteration with a
neighborhood size three times larger than usually (see Appendix B.1 for details on how to control the neighborhood size).
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– If sim(r, r′) = |r| − 1 for some r′ ∈ P, we add a prohibitively-large value to the heuristic cost of
r (to ignore duplicates);

– If sim(r, r′) ≥ 4/5 · |r| − 1 for some r′ ∈ P and |r| > 5, a simple penalty term (100000) is added
to the heuristic score (to discourage limited diversity routes);

If the heuristic score of r is better than the heuristic score of some rout ∈ P, we remove rout and insert
r. This rule is slightly enriched with two principles: (i) never remove a unique route containing some
i ∈ [1..m] and (ii) always insert a route that contains some i ∈ [1..m] not covered by other routes from
P. The size of P is fixed to min(100,m).

selecting from P the routes to inject into the current solution s The first extracted route is chosen
as follows: randomly pick up four routes from P and choose the route r with the minimum heuristic
cost such that the following similarity condition is verified: sim(r, rs) < |r|/2 for any route rs in s.
The goal is to avoid injecting into s routes that are too similar to existing routes of s. Afterwards,
if we need to extract an additional route (recall that stronger perturbations require more routes), we
select the route rnxt that brings the maximum number of new elements into s, while still verifying the
above similarity condition sim(rnxt, r

s) < |r|/2 for any rs in s.

Finally, this perturbation strategy is applied in the same manner for feasible and infeasible permutations,
i.e., permutations for which there is no decoded solution with with k vehicles or less (see Remark 3, Sec-
tion 5.2). However, after 3 perturbations that do not allow the search process to exit the penalized space
area, our ILS applies a complete random restart.

4 Fast Arc-Routing Pricing

Our pricing routine mainly relies on the Dynamic Programming (DP) scheme from [19]. The advantage of
this scheme is that its time complexity does not depend on any quadratic term such as |V |2. More exactly,
it uses an asymptotic running time of only O(Q · (|E| + |V |log(|V |))), by exploiting the sparsity of typical
instances that usually verify |E| � |V |2.

We first recall this scheme below (Section 4.1). Then, we present two acceleration techniques that can
speed-up the convergence by factors of tens or even hundreds (Section 4.2). Finally, Appendix C presents
two cycle prevention techniques, used for avoiding sending routes with cycles to the ILS process. We propose
both an exact technique to avoid 2-cycles and a heuristic approach for cycles of length 20. While the main
CG process needs an exact pricing, the CG improver can use a heuristic cycle avoidance, because it does not
fully converge to the optimum of the initial CG model.

4.1 The Sparsity-Exploiting Dynamic Programming

We recall from Section 3.2 that the pricing sub-problem requires finding a route r (of cost cra and incidence
vector ar) such that the associated column [cra ar]> minimizes ca + µ − a>y over all feasible columns
[ca a]> ∈ A. The dual variables are: µ for the fleet size constraint and y for the set-covering constraints (we
will note ye the dual variable of e ∈ ER). Given any v ∈ V and q ∈ [0..Q], we define a DP state (v, q) for
all open routes ending at v (the vehicle is not yet returned to depot) that delivered a total service (supply)
of q. We note f(v, q) the cumulative reduced cost of any open route in state (v, q); g(v, q) is the cumulative
reduced cost of any open route in state (v, q) such that the vehicle reached v by servicing some edge.

The main steps of the DP algorithm can be written as follows:

1. initialize f(v, q) and g(v, q) to a prohibitively-large value, ∀v ∈ V,∀q ∈ [0..Q]
2. call Dijkstra’s algorithm to compute f(v, 0) for all v ∈ V . simply set f(v, 0) = spath(vdep, v) + µ
3. for q in 0, 1, . . . , Q

(a) for each e = {va, vb} ∈ ER such that q + qe ≤ Q . Perform service on edge e
– if f(va, q) + de − ye < g(vb, q + qe) . Traversal sense va → vb

g(vb, q + qe)← f(va, q) + de − ye
– if f(vb, q) + de − ye < g(va, q + qe) . Traversal sense vb → va
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g(va, q + qe)← f(vb, q) + de − ye
(b) call Dijkstra’s algorithm to compute f(v, q) for all v ∈ V . Perform dead-heading (see below)

4. if minq∈[1..Q] f(vdep, q) < 0, return the corresponding column

We stress the fact that the above routine construct routes by intertwining a number of service and dead-
heading (no-service) vehicles moves, i.e., steps 3.(a) and 3.(b). The complexity factor (|E|+ |V |log(|V |)) is
due to calling Dijkstra’s algorithm in Step 3.(b). This step actually works on an extended version of graph
G constructed as follows: insert an artificial source vertex vs and an edge {vs, v} weighted by g(v, q) for each

v ∈ V . By computing the shortest path from vs to each other vertex v, one obtains a path vs −→ v′
dhead−−−−→v

composed of two segments that represent: (i) an open route that delivers a quantity of q and arrives in v′ by
servicing the last edge, and (ii) a dead-heading shortest path connexion from v′ to v. The sum of the costs of
these segments g(v′, q) + spath(v′, v) determines f(v, q). For further detail, we refer the reader to [19, § 3.1].

4.2 New Pricing Acceleration Techniques

The first goal of this section is to minimize the asymptotic running time O(Q·(|E|+|V |log(|V |))) of the above
pricing scheme, as well as its practical running time. This is particularly important for the CG improver,
because it can slow down the ILS algorithm. First, by avoiding some dead-heading moves, we prove that one
can obtain a heuristic pricing version (Section 4.2.1) that reduces the complexity factor (|E|+ |V |log(|V |)).
Secondly, we address the Q factor in Section 4.2.2: we reduce the practical running time by making the DP
algorithm ignore some (dominated) states. For a fixed v ∈ V , one does not need to record and scan the
states (v, q) for all q ∈ [0..Q], because certain values of q yield dominated states.

4.2.1 Avoiding Deadheading

The first acceleration technique aims at reducing the number of calls to Dijkstra’s algorithm in Step 3.(b), as
this represents the most time consuming step. As hinted above, the goal of this step is to generate new states
by linking states (v′, q) to states (v, q) by a dead-heading move from v′ to v. To reduce such computationally
intensive calculations, we only execute Step 3.(b) with probability 1/pskip, where pskip is a parameter (the
initial value is pskip = m). The number of potential dead-heading moves is thus divided by pskip in average.
This way, as long as pskip > 1, the pricing algorithm actually returns a heuristic solution. However, pskip
is iteratively decremented each time this heuristic pricing finds no negative reduced cost column. At the
last CG iteration, the pskip value is always 1, so as to eventually remove any heuristic behaviour from our
pricing. The CG can only finish when this exact pricing version (with pskip = 1) finds no negative reduced
cost column.

However, the exact pricing is only needed at the end of the search; most other CG iterations can use the
heuristic pricing that reduces the complexity factor (|E|+ |V |log(|V |)). For instance, if above Step 3.(b) is
never called, the resulting pricing calculation require an asymptotic running time of only O(Q · |ER|).

Despite its simplicity, this technique yielded the most important speed-up on the total CG convergence,
i.e., the total time can be reduced by factors of tens or even hundreds—see Table 2, Section 6.2. This comes
from the fact that a nearly-optimal solution of the CG model could often be constructed from routes with
limited dead-heading. This also has a stabilization effect in the way columns are generated: the complete
pricing algorithm is only executed towards the end of the search, when the dual values are close to optimal.

4.2.2 A Mixed Tree-Array Data Structure for Fast Recording of Non-Dominated States

Certain states of this DP scheme are dominated by others and this can be used to reduce the above complexity
factor Q. Consider two states (q1, v) and (q2, v). If q1 < q2 and f(v, q1) < f(v, q2) then state (v, q1) realizes
a better performance and consumes fewer resources than (v, q2). State (v, q2) can be considered dominated
(useless), because any transitions that can be triggered from (v, q2) can also be triggered from (v, q1) and
they lead to better performances from (v1, q1). To avoid dominated states, we propose to consider for each
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v ∈ V only a list of states states (v, q1), (v, q2), . . . for which the following hold :

q1 < q2 < q3 < . . . and
f(v, q1) > f(v, q2) > f(v, q3) > . . .

(4.1)

Besides using an array of size Q to record all states of v, we use a logarithmic-time red-black tree that
maintains a sorted list of states that verify above conditions. We recall that a red-black tree can record
a list of sorted numbers such that any insertion or removal can be performed in logarithmic time [10]. In
our case, the red-black tree maintains the quantities q1, q2, q3, . . . sorted such that q1 < q2 < q3 . . . . The
asymptotic running time of a read access to a state of the red-black tree is logarithmic in the number of
states already recorded. However, by recording at the same time these states (v, q1), (v, q2), . . . in an array
indexed by [0..Q], we can access f(v, q) in constant time. Other read access operations (e.g., finding i such
that qi < q < qi+1) are performed using the red-black tree.

Each newly discovered state (v, q) can actually be ignored (removed) if it is dominated by some other
state. To obtain this behaviour, one can record (v, q) in the array and tentatively introduce (v, q) in the
red-black tree at its appropriate position, i.e., between some (v, qi) and (v, qi+1) such that qi < q < qi+1 (the
special case qi = q is addressed below). If f(v, qi) ≤ f(v, q), then the new state (v, q) is actually dominated
by state (v, qi) and we immediately remove (v, q) from both data structures. Otherwise, the states (v, qi)
and (v, q) do not dominate one another and (v, q) is accepted.

Furthermore, if (v, q) dominates other existing states, these states need to be removed. Indeed, if
f(v, q) ≤ f(v, qi+1), the new state dominates (v, qi+1) and we remove state (v, qi+1). Furthermore, if state
(v, qi+2) also verifies f(v, q) ≤ f(v, qi+2), we also remove (v, qi+2). In fact, we iteratively remove all states
(v, qi+1), (v, qi+2), (v, qi+3) up to the first state non-dominated by q (or up the end of the list).

Finally, we address the case in which there is already some state (v, qi) such that qi = q. If f(v, qi) ≤
f(v, q), we remove the new state (v, q); otherwise, the new state dominates the old one and we remove as
above all states (v, qi), (v, qi+1), (v, qi+2), . . . dominated by (v, q).

We observe that each above operation requires individually a logarithmic (or constant) asymptotic time.
In theory, the use of this structure should increase the total asymptotic running time by a logarithmic
factor. However, despite this theoretical slowdown, the reduction of the number of states can actually make
the practical running time decrease. Indeed, the fact that we can choose not to record a state can trigger
a cascading effect and later prune many other states. The experiments from Section 6.2 show that the use
of this red-black tree can actually reduce the total convergence time by factors larger than 2 (up to 8 for
instances with Q > 20000). However, to draw firm conclusions on this speed-up, one would need more
comprehensive experiments and this lies outside the scope of the current paper.

5 From Permutations to Routes: Decoding and Post-Decoding

5.1 Overview and Related Work

The Ulusoy’s split algorithm [33], one of the earliest CARP heuristics, generates an explicit solution by
splitting a giant tour into a set of feasible routes. A giant tour is a unique route that services all edges
by (very probably) violating the capacity constraint. It can be represented as a permutation with ori-
entations i.e., a list of oriented edges (s1, t1), (s2, t2), . . . (sm, tm) that encode the following vehicle moves:

vdep
dhead−−−−→s1

srv.−→t1
dhead−−−−→s2

srv.−→t2 . . .
dhead−−−−→sm

srv.−→tm
dhead−−−−→vdep, where “

srv.−→” stands for a serviced edge and

“
dhead−−−−→” represents a non-service shortest path. The use of split has become increasingly frequent over the

last decades and the permutations with orientations has become one of the most successful indirect encodings
in the CARP meta-heuristic literature [17, 18, 32, 12]. For more information on related splitting routines,
we refer the reader to the recent survey [30].

To interpret Arc-Routing as a permutation set-covering problem (see Definition 1, Section 2), we need
to encode any CARP solution as a classical (non-oriented) permutation s : [1..m] → [1..m], also written
s = (s1, s2, . . . sm) To turn such s into an explicit CARP solution, we apply two steps. First, we use an
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exact decoder (Section 5.2) that finds the best explicit CARP solution that services all edges in the order
s1, s2, . . . sm. Secondly, this explicit solution is further improved by a deterministic post-decoding operator
(Section 5.3). This way, any given permutation s is always mapped to a unique CARP solution.

The exact decoder relies on a Dynamic Programming (DP) routine that builds a state graph GS on
which the best explicit solution is calculated as a constrained shortest path. Each vertex of GS represents
a vehicle state such as : “the vehicle returned to depot after servicing edge i” or “edge i has just been
serviced in a given direction”. Our DP routine has the same complexity as split, considering, for instance,
the implementation discussed in [29, §2.2].

The general idea of transforming non-oriented lists of edges into routes is not new. The guided local search
from [5] describes a move in which a sequence of edges is relocated such that the best traversal direction is
determined afterwords. A very related technique is split with flips [29] that generalizes the classical (oriented)
split by determining the best edge directions. This split with flips decoder was already used in Grasp and
ILS algorithms, but tested with very short computing times. Transformations of edge flows into routes also
arise in the exact algorithm [6], although their approach is devoted to individual routes. However, to our
knowledge, this is the first study that provides a full pseudocode, a detailed complexity discussion and an
investigation of exceptional cases for this transformation of permutations into CARP solutions.

Regarding the deterministic post-decoder, its goal is to improve the explicit solution returned by the
above decoder by applying faster modifications on explicit routes. For instance, a simple route operation
consists of swapping two edges: this only requires disconnecting the entering and the exit ends of the swapped
edges and re-connecting them to new positions. We will also discuss more refined route operations, such as
the famous 2-Opt and the Cross-Exchange operator used for both VRP [31] and CARP [26].

5.2 The Exact Decoder

Given input permutation s = (s1, s2, . . . sm), the decoder determines a set of routes of minimum total cost
that service all required edges ER in the order s1, s2, . . . sm. To lighten the notation, we use the following
convention: we consider that the required edges ER = [1..m] are indexed in such a way that the input
permutation is (s1, s2, . . . sm) = (1, 2, . . .m). This does not restrict the generality: a simple relabeling of ER
can always make any input permutation equal to (1, 2, . . .m). The decoder first constructs a state graph GS
(Section 5.2.1); the best explicit solution is calculated as a constrained shortest path on GS (Section 5.2.2).

5.2.1 Constructing a State Graph

We need an edge-indexed vertex notation. We consider that each required edge i ∈ [1..m] has two end
vertices [i : 0] and [i : 1]. As such, any vertex can be denoted as an end point [i : o] of some edge i (with
o ∈ {0, 1}). We define a state graph GS with two types of vertices (states):

2m open states [i : o] that represent an open route in which the vehicle has just arrived at vertex [i : o]
and has just serviced edge i, by traversing it from [i : 1− o] to [i : o] (with o ∈ {0, 1}).

m+ 1 depot states [i] indicating route endings and possible beginnings of new routes. In state [i], the
vehicle has just returned to the depot after servicing edges [1..i] and is ready to start servicing edge
i + 1. The depot states [0] and [m] are the start and end states (vertices) in the constrained shortest
path calculations.

One can observe several types of weighted arcs in GS :

1. arcs [i : o1] → [i + 1 : o2] between open states with a weight of di+1 + spath
(
[i : o1], [i + 1 : 1 − o2]

)
,

where di+1 is the length of edge i + 1 (recall the notations from Section 3.1) and notation spath(u, v)
indicates the shortest path between vertices u, v (∀u, v ∈ V ).

2. arcs linking open states and depot states:

– “return to depot” arcs [i : o]→ [i] with a weight of spath
(
[i : o], vdep

)
;

– “leaving depot” arcs [i− 1]→ [i : o], weighted by spath
(
vdep, [i : 1− o]

)
+ di.
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3. path arcs [i] → [j] between depot states (with i, j ∈ [0..m] and i < j). Such an arc represents the
shortest GS path between [i] and [j], calculated using the above two arc types in GS . This calculation
can be carried out using O(j − i) operations (see an example in Appendix D).

The complexity and computational aspects are discussed in Section 5.2.2 below. For the moment, we
point out that the above GS construction requires (pre-)computing the shortest path spath(u, v) between any
two vertices u and v of G. This can be done by applying (only once in advance) an all-pairs shortest path
algorithm, e.g., Roy-Floyd-Warshall algorithm of complexity O(n3) or Johnson’s algorithm of complexity
O(nm+n2log(n)) [10]. In fact, these pre-computed shortest paths are also used by the CG pricing algorithm.

5.2.2 Constrained Shortest-Path on the State Graph GS

We observe that any arc [i]→ [j] between depot states [i] and [j] of GS (∀i, j ∈ {0, 1, . . .m}) can be seen as
a unique route in G. As such, the final decoded solution is a set of routes that we determine as a constrained
shortest path from [0] to [m] in GS ; the constraints are the following:

(i) each arc of the form [i] → [j] has to respect the capacity constraint qi+1 + qi+2 + . . . qj ≤ Q. We
will enforce this constraint by computing the maximum number of clients maxClients[i] that can be
serviced by a route that starts at edge i+ 1 (see Line 2 in Algorithm 2, next page).

(ii) the number of depot states in the constrained shortest path is at maximum k (excluding the initial
state [0]). This constraint bounds the fleet size to k.

The pseudo-code of the decoding routine is provided by Algorithm 2 next page. It consists of three stages:

stage 1 initialize several array data structures for the arcs ofGS (the comments in Line 3 are self-explanatory);
stage 2 compute the weights of the arcs of GS , i.e., both the arcs from depot states to open states (structure

depToOpn) and arcs from depot to depot states (structure depToDep);
stage 3 compute the constrained shortest path from [0] to [m] in GS . This last stage relies on a Dynamic

Programming (DP) routine that can actually generate up to k (sub-)states for each depot state [i] of
GS . Each such DP state encodes the minimum cost constrShPth[i][κ] necessary to service edges [1..i]
using exactly κ routes. The DP recursion formula is provided by Line 19 of Algorithm 2 and it is
rather self-explanatory. One can remove the second index to lift the fleet size constraint.

5.2.3 Speed-up and Complexity Remarks

The complexity of Algorithm 2 is O(m · k · maxr∈s(|r|)), as directly resulting from the three nested for

loops of the last stage (Lines 16-18), where maxr∈s(|r|) is the maximum number of clients (edges) that can
be serviced by a potential route associated to input permutation s. The factor k can actually be reduced
both theoretically and practically. In theory, one can reduce it to log(k) as follows: write k in binary as

k =
∑κ=blog(k)c
κ=0 bκ2κ and compute all values of the form constrShPth[i][2κ] from constrShPth[i][2κ−1]

values, ∀i ∈ [1..m]. However, one can achieve a more practical speed-up using the following two remarks.

Remark 1. We first run a O(m ·maxr∈s(|r|)) simplified decoder version with no fleet size constraint. This
simplified version is constructed from Algorithm 2 as follows: remove the for loop from Line 17 and transform
constrShPth into a one-dimensional array (remove the second κ index). This way, Algorithm 2 uses an
unlimited number of vehicles and returns an explicit CARP solution of any fleet size. If this solution uses
more than k routes, then the complete O(m ·k ·maxr∈s(|r|)) decoder is still needed. Otherwise, the simplified
decoder alone is sufficient.

Experiments suggest that this simplified decoder returns a solution with no more than k routes in roughly
half of the cases (see Appendix A) . However, for certain instances, the fleet size constraint is very difficult
to satisfy, and so, the simplified decoder can actually fail too often. For such instances, CG-P-ILS can very
frequently end up calling both decoders. As such, if CG-P-ILS detects that this unwanted situation arises in
more than 1

k of cases, it disables the simplified decoder. �
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Algorithm 2 The Decoding Routine

Require: a service order given by permutation s = (1, 2, 3, . . .m) . without restricting generality
Ensure: minimum cost needed to service all required edges in the order 1, 2, . . . ,m

Stage 1: Initialize data
1: for i← 1 to m do
2: maxClients[i]← max{δ: qi+1 + qi+2 + · · ·+ qi+δ ≤ Q} . nr edges that can be serviced from i+ 1 on
3: Initialize the following with a very large value M

– depToDep[i][j]←M , for all j ∈
[
i+ 1..i+ maxClients[i]

]
. weights of GS arcs [i]→ [j]

– depToOpn[i][j, o]←M for all j ∈
[
i+ 1..i+ maxClients[i]

]
, o ∈ {0, 1} . arcs [i]→ [j : o]

– constrShPth[i][κ]←M for all κ ∈
[
0..k

]
. constrained shortest path [0]→ [i] using κ routes

4: end for
5: constrShPth[0][0]← 0 . initial state: serviced 0 edges with 0 vehicles at 0 cost

Stage 2: Compute depToDep and depToOpn (the arcs of GS)
6: for i = 0 to m− 1 do . i = 0 indicates that nothing was serviced yet
7: depToOpn[i][i+ 1, 0]← spath(vdep, [i+ 1, 1]) + di+1 . spath(u, v) = shortest path from u to v ∈ V
8: depToOpn[i][i+ 1, 1]← spath(vdep, [i+ 1, 0]) + di+1 . di+1 = length of edge i+ 1
9: depToDep[i][i+ 1]← min

(
depToOpn[i][i+ 1, 0] + spath([i+ 1, 0], vdep),

depToOpn[i][i+ 1, 1] + spath([i+ 1, 1], vdep)
) . depot-to-depot arcs in GS

10: for δ = 2 to maxClients[i] do
11: depToOpn[i][i+ δ, 0]← min

(
depToOpn[i][i+ δ − 1, 0] + spath([i+ δ − 1, 0], [i+ δ, 1]) + di+δ),

depToOpn[i][i+ δ − 1, 1] + spath([i+ δ − 1, 1], [i+ δ, 1]) + di+δ)
)

12: depToOpn[i][i+ δ, 1]← min
(
depToOpn[i][i+ δ − 1, 0] + spath([i+ δ − 1, 0], [i+ δ, 0]) + di+δ,

depToOpn[i][i+ δ − 1, 1] + spath([i+ δ − 1, 1], [i+ δ, 0]) + di+δ)
)

13: depToDep[i][i+ δ]← min
(
depToOpn[i][i+ δ, 0] + spath([i+ δ, 0], vdep),

depToOpn[i][i+ δ, 1] + spath([i+ δ, 1], vdep)
)

14: end for
15: end for

Stage 3: Calculate by Dynamic Programming the constrained shortest path from [0] to [m]
16: for i = 0 to m− 1 do
17: for κ = minVeh[i] to maxVeh[i] do . see Remark 2 for setting the values minVeh[i] and maxVeh[i]
18: for δ = 1 to maxClients[i] do
19: constrShPth[i+ δ][κ+ 1]← min(constrShPth[i+ δ][κ+ 1],

constrShPth[i][κ] + depToDep[i][i+ δ])
. Main DP recursion

20: end for
21: end for
22: end for
23: return constrShPth[m][k] . see Remarks 2 and 3 for the case “no solution with k routes”

Remark 2. While the fleet size constraint accounts for k-fold increase of the asymptotic running time, it
has a much lower impact on the practical decoding time, because the interval

[
minVeh[i], maxVeh[i]

]
can be

very small in Line 17.

Indeed, observe that Line 17 of Algorithm 2 does not actually go from 1 to k but from minVeh[i] to maxVeh[i],
where minVeh[i] and maxVeh[i] represent the minimum and (resp.) the maximum fleet sizes that are relevant
for state [i]. A fleet size κ is relevant at state [i] if there exists a path with exactly κ arcs linking [0] to
[i] in GS . In the beginning of the decoding process, most states [i] are associated to very short intervals
[minVeh[i]..maxVeh[i]]. It is only after an update of constrShPth[i + δ][κ + 1] in Line 19 that a fleet size of
κ+ 1 can be seen as relevant for state [i+ δ], enlarging [minVeh[i+ δ], maxVeh[i+ δ]].

Furthermore, a new DP state with a fleet size of κ+ 1 is only useful if it reduces the cost compared to a
fleet size of κ, i.e., only if constrShPth[i][κ+ 1] < constrShPth[i][κ]. This property can be used to further
reduce the interval

[
minVeh[i]..maxVeh[i]

]
. It is enough to record only a set κ1, κ2, κ3, . . . of relevant fleet
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sizes, i.e., for which the following hold :

κ1 < κ2 < κ3 < . . . and
constrShPth[i][κ1] > constrShPth[i][κ2] > constrShPth[i][κ3] > . . .

(5.1)

Such sets can be implemented using the mixed tree/array data structure as for (4.1) in Section 4.2.2. �

Remark 3. For low-quality permutations s, one can not provide all service in the order s1, s2, . . . sm with
only k vehicles of capacity Q. Algorithm 2 detects this case by finding there is no fleet size value relevant at
state [m], i.e., no value minVeh[m] < k. In this case, Algorithm 2 simply returns a very large infeasibility
penalty plus the minimum unserviceable quantity, i.e., the minimum amount that can not be serviced using
the order imposed by the current permutation.

This unserviceable quantity can be (heuristically) computed in O(m) time: restrict the values of δ in
Lines 10 and 18 to δ =maxClients[i], i.e., we obtain a version of Algorithm 2 that forces each route to
“stretch” to cover as many serviced edges as possible. The service amount remaining unserviced at the end
of Algorithm 2 constitutes an upper bound for the unserviceable quantity. In practice, when the ILS process
traverses a penalized search space area, the unserviceable quantity is computed by the above heuristic,
running the full decoder only if the returned unserviceable quantity is 0. While this heuristic might fail
detecting the feasibility of some permutations, the general speed gain seems more important. �

5.3 Deterministic Post-Decoding Operator

While the ILS process (Section 3.3) evolves in the space of permutations, the fastest way to improve a solution
consists of performing local modifications on decoded routes. After decoding permutation s, CG-P-ILS tries
to improve the returned decoded solution using three types of route operations (see below). For this, the
post-decoding operator scans all (pairs of) positions on which these route operations can be executed: any
modification that can bring a strict improvement is effectively implemented right away. These operations
are tried on a fixed order of indices (positions) until no improvement can be done, as in a (deterministic)
buble-sort loop.

route rotation A route r can be seen as a closed walk vdep → v1 → v2 → . . . v|r| → vdep containing both
serviced and non-serviced edges. Using a similar approach as in [33, §3.3], one can compute in constant
time the improvement that can be obtained by re-locating the depot just before any index i ∈ [2..|r|].
More exactly, for any such i, this operation constructs route vdep → vi → vi+1 → . . . v|r| → v1 →
v2 · · · → vi−1 → vdep. The cost variation resulting from this modification can be computed in constant
time, because one only has to evaluate the cost of re-locating the “connexion” points v1, vi−1, vi and
v|r|. The route rotation can be applied on a linear number O(m) of positions i.

cross-exchange Given routes vdep → v1 → v2 → · · · → vdep and vdep → v′1 → v′2 → · · · → vdep,
cross-exchange takes a segment vi → · · · → vi+δ of the first route and swaps it with a segment
v′i′ → · · · → v′i′+δ of the second route. We also consider reversing one of these segments when this
improves the cost. For given i, j and δ, the objective function evolution can be calculated in constant
time, because one only has to evaluate the cost variation resulting from disconnecting the two segments
at their end points and re-connecting them at their new places. Cross-exchange can be applied on a
total number of O

(
m2 maxr∈s(|r|)

)
positions, considering all possible choices of the two routes. This is

because we only consider connexion points (vi, v
′
i′ , etc.) that represent start vertices of serviced edges.

If δ = 1, cross-exchange becomes a simple edge swap. This route-level operation was already used
and described in other CARP papers [26, Fig. 2].

2-Opt Given routes vdep → v1 → v2 → · · · → vdep and vdep → v′1 → v′2 → · · · → vdep, 2-Opt replaces them
with the following two routes: (i) a first route that links a segment vdep → v1 → v2 → . . . vi to a
segment v′i′+1 → v′i′+2 → · · · → vdep, and (ii) a second route that links vdep → v′1 → v′2 → . . . v′i′ to
vi+1 → vi+2 → · · · → vdep. The cost increase induced by this modification can be easily calculated as
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spath(vi, v
′
i′+1) + spath(v′i′ , vi+1)− spath(vi, vi+1)− spath(v′i′ , v

′
i′+1). The number of potential choices of

vi is proportional to the number of serviced edges in the first route, because vi needs to be the exit
vertex of required edge {vi−1, vi}. The same applies to v′i′ . By reversing one of the routes, we obtain
a second version of 2-Opt, see also [18, Fig. 4] for examples and further 2-Opt discussions.

After trying all these route operations, the initial permutation s can be transformed into a new per-
mutation s′. In this case, CG-P-ILS calls again the decoder on s′, because the decoder can better split s′

and further improve the cost ; if this happens, the post-decoder operator is also called again. As such, the
decoder and the post-decoder are called iteratively until they can no longer strictly improve the cost. In the
end, the initial service order can evolve to a new order s̄1, s̄2, . . . s̄m. We say that s and s̄ are decoded into
the same CARP explicit solution; however, CG-P-ILS continues by replacing s with s̄.

Finally, observe that numerous other route-level operations could have been applied during this post-
decoding, such as the repair operator from [24], or Shorten from [15].

Remark 4. (the case of infeasible permutations) If the input permutation s makes the decoder return an
explicit solution with more than k routes (see Remark 3, previous page), then this explicit solution is actually
infeasible. In this case, we do not use the post-decoder described above, but a post-decoder variant with a
“bin-packing” goal. More exactly, this post-decoder variant tries to make all existing routes reduce their slack
(unused capacity), so as to get closer to a feasible CARP solution. For this, we scan the edges from 1 to
m and, for each last edge i of a route ri, we perform the following: find some edge j situated after i in the
input permutation such that qj is smaller or equal to the slack (unused capacity) of ri and move j after i in
ri. Such edges j > i are thus advanced to earlier service positions, allowing earlier routes ri to include them
in their service. By iteratively repeating this, the slack of earlier routes decreases and the number of later
(potentially) unserviceable edges can also decrease.

6 Numerical Experiments

6.1 Summarized Results and General Trends

Our implementation first launches the ILS process. We fixed the total time limit at TMmax = m ·k · dm/70e ·
dm/100e, based on the following principles: (i) m · k seconds are usually enough for small graphs (m ≤ 50),
(ii) we observed it can be useful to allow twice as much time for medium-sized graphs (m ∈ [70, 100]), and
(iii) larger graphs with m > 100 might need quadratically more time. If the best solution if found at some
moment between 0.9TMmax and TMmax, we allow an additional time of 0.1TMmax. Finally, the main CG
process is launched in parallel and we always wait for its full convergence.

Table 1 presents a summary of the results of two CG-P-ILS versions on all CARP instances that we are
aware of.3 The first group of 5 rows (besides the heading) is devoted to the standard CG-P-ILS and it reports:
(i) the average deviation from the best-known solution, (ii) the number of instances for which the optimum
solution was found, and (iii) the average CPU time (in seconds) of both the ILS and CG components. The
second group (last 3 rows) corresponds to an CG-P-ILS version with no CG component at all.

When comparing summarized average gaps, one should be aware that, on certain easier instances, all
CG-P-ILS variants always report a gap of 0. This has a implicit smoothing effect on the reported average
gaps, making certain differences less visible at a first glance. For example, 22 of the 23 gdb instances are
solved to optimality by all CG-P-ILS variants, and so, the average gap on column gdb is generally equivalent
to 1

23 of the gap reported on the 23th instance. Observe that the pure ILS alone can reach a gap of 0 on 105
out of 197 instances (see last “#Hits opt” row).

Table 1 shows that CG-P-ILS reports an upper bound UBILS within 101%opt and a lower bound LBCG ≥
90%opt, where opt is either the optimum value or the best known (upper or resp. lower) bound. Furthermore,
the average gap between UBILS and LBCG is at most 10%UBILS, even for the very large egl-large instances

3To the best of our knowledge, we use all benchmark sets available in the literature. They are publicly available on-line, see
www.uv.es/~belengue/carp.html or logistik.bwl.uni-mainz.de/benchmarks.php. The later web-site also provides a collection
with the best bounds reported by other papers; we used these bounds to determine the average gaps of CG-P-ILS.
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Alg Instance set kshs gdb val beullens egl egl-large

ver. Number of instances 6 23 34 100 24 10
st

a
n

d
ar

d
fu

ll
C
G
-
P
-
I
L
S

Avg gap UBILS/UBbst − 1 (in o/oo) 0 0 2.5 2.4 2.9 3.0
Avg ILS time [s.] 0.17 13.00 121.88 184.87 5043 158638
#Hits optimum or best-known 6 23 28 64 8 0
Avg gap LBCG/LBbst− 1 (in o/oo) -71.4 -48 -95.8 -64.9 -34.7 -39.2
Avg CG time (incl. CG improver) 0.04 0.11 2.46 18.16 1350 230324
Avg gap LBCG/UBILS − 1 (in o/oo) -71.4 -48 -98.1 -67.6 -40.1 -79.2

p
u

re
IL

S
(n

o
C

G
) Avg gap UBILS/UBbst − 1 (in o/oo) 0 0.2 14.8 6.4 7.5 6.4

Avg ILS time [s.] 0.17 38.96 103.76 149.56 5553 109589
#Hits optimum or best-known 6 22 26 45 5 0

Table 1: Average optimality gaps and CPU times of two CG-P-ILS versions (with or without CG). Let us
insist we provide averages over dozens of instances: since both versions can reach the best-known bound
on half of instances (see rows #Hits), the average gap variation might only be due to the remaining half of
instances. See also Appendix A for instance by instance results or Section 6.2 for statistics over several runs.

(see the last of the “standard full CG-P-ILS” rows). The comparison between the standard CG-P-ILS and
the pure ILS confirms the interest in using CG paradigm: the use of CG can reduce the ILS gap by half.

Finally, we discuss more technical implementation details as they can also influence the performance of
optimization methods. The ILS process is written in Java and all CG programs are written in C++. The
main CG process is launched as an external program in a separate thread of the ILS Java program. This
thread executes the associated C++ program, retrieves its standard output and can insert new sequences
into the pool P. Since this pool is shared with the main ILS Java thread, all read and write operations on
P are guarded by a mutex. This solves any synchronisation issue between the main CG process and the ILS
process, because there is no other interaction between these two processes. However, when a CG improver
is launched, the ILS process waits for its completion, because the CG improver can modify the current ILS
solution. The CPU times are obtained on an Intel Xeon processor clocked at 2.33GHz under Debian Linux.

6.2 Evaluating the Impact of CG over Several Runs

We now evaluate: (i) the speed gain realized by the acceleration techniques in CG, and (ii) the impact of
the CG mechanisms and of the post-decoder in the ILS.

For this, we perform for each instance several runs of different CG-P-ILS variants. So far, we only
presented summarized results, because the whole CARP benchmark set is relatively large and we are not
interested in the precise bounds of particular instances, but rather in trends that show up across many
instances. However, since we here perform several runs of several CG-P-ILS variants per instance, we prefer
to report instance-by-instance results, using a smaller benchmark set. We voluntarily selected seven instances
on which CG-P-ILS exhibits a relatively large performance variation. We consider the same maximum running
time as above, but we used a slightly faster machine than in Table 1 (i.e., an Intel Core I7-950 processor
clocked at 3.07GHz under Suse Linux).

We first analyze (Table 2) the impact of the CG acceleration techniques. It is due to these techniques
that the CG process could be fast enough to be effectively integrated within the ILS for the larges instances.
Table 2 reports a comparison of the running time of several CG versions. Since the main CG process always
reports the same optimum value of the CG model, we only compare the running times. We observe that:

– the dead-heading avoidance technique (Section 4.2.1) substantially improves the convergence speed.
Without this component, the search can be hundreds of times slower.

– the use of the data structure from Section 4.2.2 can double the speed, as it rapidly prunes dominated
states in the DP pricing scheme. Other experiments on the egl-large instances with Q > 20000
showed that the use of this structure can make the speed increase by a factor of up to 8.
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Instance/LBCG Complete CG version No deadheading No deadheading avoidance (§4.2.1)
with all proposed options avoidance (§4.2.1) No red-black tree (§4.2.2)

gdb8/330 0.081 1.02 1.1
val9D/357 1.16 153.0 249.0
C09/5003 2.42 273.0 419.0
D23/2893 61.1 2652.85 3495.36
egl-e3-C/9954 2.95 430.0 815.0
egl-e4-C/11137 3.21 735.0 1092.67
egl-s1-C/8267 2.31 120.0 260.0

Table 2: The convergence time needed by three CG variants (averages over 10 runs, in seconds). For
comparison, the original implementation of sparsity-exploiting DP (on which our approach is based) required
around 400 seconds in average on the egl instances [19].

Table 3 below compares the final cost values reported by ten runs of the following algorithms: the
standard full CG-P-ILS (Columns 2-4), CG-P-ILS without CG improver (Columns 5-7), CG-P-ILS with no
CG component at all (Columns 8-10) and CG-P-ILS with no deterministic post-decoder (last 3 columns).
Several conclusions can be drawn from this table.

– the last 3 columns show that the deterministic post-decoder operator is clearly extremely useful. Cor-
roborating information from other CARP papers, it seems that it is difficult to reach very competitive
results by only working in a high-level permutation space.

– the CG improver can be evaluated by comparing the version “Standard CG-P-ILS” with the version
“No CG Improver”. This shows that the CG improver brings an improvement on the average reported
cost (compare Column 4 to Column 7, in boldface) and also on the general success rate (compare
Column 2 to Column 5).

– the impact of the CG process can be evaluated by observing that the version “No CG Improver” reports
lower average costs than “No CG at all” (compare Columns 7 to Column 10, in boldface).

Instance/optimum or Standard CG-P-ILS No CG Improver No CG at all No Post-Decoding
best upper bound bst(#bst) max avg bst(#bst) max avg bst(#bst) max avg bst(#bst) max avg

gdb8/348 0 (10) 0 0.0 0 (6) 2 0.8 0 (6) 2 0.8 0 (1) 2 2.2
val9D/388 3 (10) 3 3.0 3(4) 5 3.8 3(5) 6 3.7 16(1) 25 18.4
C09/5260 0 (1) 40 21.5 5 (1) 60 26.5 5 (1) 60 36.5 100 (2) 120 111.0
D23/3130 0 (4) 10 6.0 0 (1) 25 10.0 10 (2) 25 15.0 45 (1) 440 264.0
egl-e3-C/10292 13 (3) 47 33.8 17 (3) 66 39.0 17 (1) 73 45.3 46 (1) 110 84.6
egl-e4-C/11550 8 (1) 77 44.5 25 (1) 122 69.8 33 (1) 136 86.5 169 (1) 444 289.0
egl-s1-C/8518 0 (10) 0 0.0 0 (8) 23 20.2 0 (6) 28 23.5 42 (1) 120 94.4

Table 3: Deviation from the optimum (or the best known bound) of the upper bounds reported by four
CG-P-ILS variants over ten runs on different instances. For each variant, we report best (smallest) deviation
from the best-known solution (bst), the number of runs reaching this deviation (#bst), the average result
over ten runs (avg), as well as the worst deviation ever reported at the end of a run (max).

6.3 Comparisons with the CG and LS Literature

The CARP generated a large amount of work in the last couple of decades: important progress has been
made and a dozen of new algorithms have been recently proposed. Since the goal of this paper is not to
perform a comprehensive survey of such a vast literature, we only compare CG-P-ILS with the most related
CG or ILS work. More exactly, Table 4 below compares our ILS bounds with those of CARPET [15], the
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two Variable Neighborhood Search algorithms VNS1 [16] and VNS2 [26], the two Tabu Search (TS) methods
TS1 and TS2 from [7], the TS enhanced with a repair operator (TS-RepOp) from [24], the ILS acting on a
transformation of CARP into VRP (ILS-VRP) from [23] and the ILS with short running times from [29].
This latter algorithm is the most similar to our ILS, because it uses a decoder “split with shifts” that acts
on permutations (although this decoder is not used on certain instances such as egl).

Regarding the lower bounds, we compare with the following CG work: the sparsity-exploiting CG with
elementary routes (CG-ElemR) from [19], the CG with cuts generated by a dual ascent heuristic (CG-Cuts)
from [21], the results at the root node of the Branch-and-Cut-and-Price (BCP) from [22], and the Integer
Ray Method (IRM) for CG optimization and lower bounding from [27].

U
B

L
S
−

U
B

b
st

U
B

b
st

Algorithm kshs gdb val beullens egl egl-large
CG-P-ILS 0.00% 0.00% 0.25% 0.24% 0.29% 0.30%
CARPET [15] – 0.35% 0.51% – – –
VNS1 [16] – 0.3% 0.85% – – –
VNS2 [26] – – 0.00% – 0.09% –
GLS [5] – – – 0.03% – –
TS1 [7] – 0.46% 0.74% 1.71% 1.50% 2.17%
TS2 [7] – 0.07% 0.13% 0.15% 0.72% –
TS-RepOp [24] – 0.00% 0.12% 0.07% 0.47% 0.99%
ILS-VRP [23] – – – – – 0.08%a

ILS-ShortTime [29] – 0.24% 0.47% – 1.23% –

L
B

C
G
−

L
B

b
st

L
B

b
st

CG-P-ILS -7.14% -4.80% -9.58% -6.49% -3.47% -3.86%
CG-ElemR [19] -6.85% -4.76% -1.71% – -2.14% –
CG-Cuts [21] -0.00% -0.06% -0.61% – -0.89% –
BCP-root node [22] – – – – -0.5% –
IRM [27] -7.54% -9.07% -14.39% – -37.45% –

aThis deviation is calculated with regards to the best upper bounds that do include the new values
discovered by CG-P-ILS.

Table 4: The average gap of LS and CG algorithms from the best-known (or optimum) solution.

Given the large number of CARP algorithms developed over the last decade, one can say that CG-P-ILS
does reach quality results compared to other LS or CG methods. We do not claim that it systemati-
cally outperforms on medium-sized graphs all best recent exact methods [3, 6]. However, it is worthwhile
mentioning that CG-P-ILS did find new upper bounds for the instances egl-g1-C, egl-g1-E, egl-g2-A,
egl-g2-C and egl-g2-E, see Appendix A for exact figures.4 On several widely-used egl instances, the
quality of the CG-P-ILS upper bounds has only been reached before by 2 or 3 algorithms out of a dozen
of papers (compare the results on egl-s2-A, egl-s4-A and egl-s4-B from Appendix A with those at
logistik.bwl.uni-mainz.de/benchmarks.php). If we consider a “VRP-free” comparison (i.e., excluding
the algorithm [23] based on a CARP-to-VRP transformation), one can say that CG-P-ILS improves the
best-known CARP upper bound on almost all egl-large instances (all except egl-g2-D).

7 Conclusions

We described two techniques for combining Iterated Local Search (ILS) with Column Generation (CG) for
permutation problems and Arc-Routing:

– the ILS process is intertwined with a CG process: the two processes run in parallel and the best se-
quences (routes) discovered by CG can be inserted into the current ILS solution during the perturbation

4See also cedric.cnam.fr/~porumbed/carp/ for different explicit CARP solutions for individual instances.
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phase. This aims at making the ILS take profit from (some of) the dual nature of the CG models.

– we use a CG-Improver operator that starts from the current ILS solution and tries to improve it by
performing several CG iterations. The goal is to increase the diversity of the solutions visited by the
ILS and to avoid to repeatedly loop on the same plateaux and local optima.

Mixing ILS and CG this way can be very useful for two reasons : (i) the use of CG sequences in the ILS
can improve the quality of the (CG perturbed) solutions visited by the ILS and (ii) the CG process naturally
reports a valid lower bound at the end of its convergence.

The first half of the paper presented the main ideas in a permutation set-covering context, i.e., essentially
using notions of sequences, permutations and set-covering. The second half is devoted to more specific CARP-
customized operators. For instance, we presented several pricing acceleration ideas that could reduce the
CG convergence time by factors of tens or even hundreds, e.g., the most important is to avoid generating
routes with dead-heading as long as possible before the final CG iterations. Based on such acceleration ideas,
we could apply CG techniques for the first time on the largest CARP instances. Since the CG improver is
used as a blocking operator inside the ILS process, the CG speed can strongly influence the speed of the ILS
process as well.
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A Detailed Instance by Instance Results

The table below provides the instance-by-instance results that generated the summaries from Table 1 (Section
6.1). The column headings are rather self-explanatory. We point out that Column 4 actually reports the
best bounds retrieved from logistik.bwl.uni-mainz.de/benchmarks.php at the beginning of this study,
but we provide a footnote for the graphs for which we improved the best-known upper bound. Column 6
and 8 provide the time and the number of iterations at the moment when the best solution was found, while
Column 7 indicates the number of decoder calls at the end of the search.

Instance m k
LBbst–UBbst UBILS Time [s]

Total Decoders ILS
LBCG

Time: CG Im- CG
(or optimum) (simplified ver.) iters prover+CG Proc iters

kshs1 15 4 14661 14661 0.28 98 (74) 4 13553 0+0.03 32
kshs2 15 4 9863 9863 0.04 336 (280) 1 8693 0+0.02 30
kshs3 15 4 9320 9320 0.14 23 (12) 5 8538 0+0.02 35
kshs4 15 4 11498 11498 0.92 1917 (1014) 47 11498 0.14+0.04 33
kshs5 15 3 10957 10957 1.15 3949 (1976) 28 10370 0+0.06 54
kshs6 15 3 10197 10197 0.24 70 (51) 4 9213 0+0.04 44
gdb1 22 5 316 316 0.57 386 (298) 4 284 0+0.03 45
gdb2 26 6 339 339 0.56 232 (214) 6 313 0+0.05 45
gdb3 22 5 275 275 0.18 21 (16) 1 250 0+0.02 45
gdb4 19 4 287 287 0.23 48 (27) 3 270 0+0.02 27
gdb5 26 6 377 377 3.13 5855 (4710) 11 359 0+0.02 37
gdb6 22 5 298 298 0.41 162 (145) 4 283 0+0.02 41
gdb7 22 5 325 325 0.70 530 (399) 2 291 0+0.03 37
gdb8 46 10 348 348 125.28 244764 (110071) 198 330 1.21+0.09 114
gdb9 51 10 303 303 83.93 173203 (55726) 134 294 0.52+0.16 116
gdb10 25 4 275 275 0.72 317 (197) 4 254 0+0.05 60
gdb11 45 5 395 395 3.35 2235 (1297) 9 364 0+0.19 116
gdb12 23 7 458 458 5.89 29472 (17507) 65 445 0.09+0.02 14
gdb13 28 6 536 536 2.05 4223 (1479) 38 526 0+0.08 69
gdb14 21 5 100 100 0.31 60 (54) 2 98 0+0.03 43
gdb15 21 4 58 58 0.02 2605 (2464) 1 57 0+0.02 39
gdb16 28 5 127 127 0.78 1028 (337) 9 122 0+0.06 70
gdb17 28 5 91 91 0.22 18 (18) 1 85 0+0.05 46
gdb18 36 5 164 164 0.47 54 (51) 2 159 0+0.11 89
gdb19 11 3 55 55 0.19 106 (88) 2 54 0+0.02 19
gdb20 22 4 121 121 7.85 58511 (4036) 67 114 0.07+0.04 60
gdb21 33 6 156 156 0.63 242 (111) 9 152 0+0.07 72
gdb22 44 8 200 200 8.52 17063 (6139) 12 197 0+0.11 85
gdb23 55 10 233 233 63.50 190357 (1551) 44 233 0.41+0.17 109
val1A 39 2 173 173 0.77 153 (122) 3 146 0+0.12 81
val1B 39 3 173 173 8.53 16438 (5132) 54 149 0.17+0.32 149
val1C 39 8 245 253 44.02 1011207 (379179) 1543 235 14.02+0.15 121
val2A 34 2 227 227 0.52 125 (118) 2 200 0+0.36 183
val2B 34 3 259 259 0.30 18 (14) 2 231 0+0.31 213
val2C 34 8 457 457 7.09 28572 (9922) 120 457 0.23+0.067 94
val3A 35 2 81 81 0.50 56 (54) 2 69 0+0.18 124
val3B 35 3 87 87 1.11 536 (400) 5 77 0+0.29 248
val3C 35 7 138 138 3.92 10963 (4350) 30 131 0+0.067 90
val4A 69 3 400 400 2.44 384 (312) 6 357 0+1.9 278
val4B 69 4 412 412 2.12 319 (229) 5 369 0+1.4 305
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Instance m k
LBbst–UBbst UBILS Time [s]

Total Decoders ILS
LBCG

Time: CG Im- CG
(or optimum) (simplified ver.) iters prover+CG Proc iters

val4C 69 5 428 428 18.44 8225 (5254) 21 393 0+1.2 296
val4D 69 9 530 536 135.68 330648 (221911) 58 497 3.07+0.65 269
val5A 65 3 423 423 14.24 3640 (2922) 14 382 0+1.3 218
val5B 65 4 446 446 1.64 302 (246) 4 404 0+1.1 265
val5C 65 5 474 474 57.58 21822 (15797) 32 434 0+0.73 198
val5D 65 9 577 585 241.11 313451 (221259) 96 544 2.48+0.62 231
val6A 50 3 223 223 1.47 387 (313) 5 194 0+0.63 216
val6B 50 4 233 233 40.03 27017 (20766) 63 203 0.53+0.57 254
val6C 50 10 317 317 2.88 2179 (1411) 12 298 0+0.13 131
val7A 66 3 279 279 1.50 225 (153) 7 249 0+0.55 193
val7B 66 4 283 283 3.45 978 (607) 12 252 0+0.74 232
val7C 66 9 334 334 12.80 7393 (3903) 23 301 0+0.34 222
val8A 63 3 386 386 12.02 3263 (2605) 8 353 0+0.92 176
val8B 63 4 395 395 31.01 11468 (8497) 13 365 0+0.74 192
val8C 63 9 521 527 325.00 687417 (214864) 410 501 6.30+0.37 196
val9A 92 3 323 323 76.63 64702 (50357) 18 280 2.03+3.4 297
val9B 92 4 326 326 331.54 47798 (36402) 43 286 1.52+2.5 301
val9C 92 5 332 332 313.75 56237 (40638) 44 292 0+2.1 325
val9D 92 10 388 391 845.07 497204 (338620) 146 357 5.64+1.5 423
val10A 97 3 428 428 277.08 25878 (21844) 45 382 4.75+3.1 259
val10B 97 4 436 436 631.19 74481 (61059) 103 389 5.69+2.8 282
val10C 97 5 446 446 257.66 37969 (29535) 65 400 1.89+2.1 271
val10D 97 10 525 532 455.65 424943 (300107) 51 485 5.19+2.3 487
C01 79 9 4150 4160 80.19 566459 (393986) 44 3870 9.43+1.6 490
C02 53 7 3135 3135 7.28 8975 (3932) 32 2982 0+0.48 244
C03 51 6 2575 2585 30.02 285221 (212109) 44 2428 4.69+0.88 333
C04 72 8 3510 3510 14.44 5936 (4262) 16 3286 0+1.3 496
C05 65 10 5365 5370 418.29 895803 (299769) 764 5118 11.62+0.85 356
C06 51 6 2535 2535 44.90 38824 (29379) 55 2354 0.45+0.61 318
C07 52 8 4075 4075 1.31 665 (452) 18 3810 0+0.42 263
C08 63 8 4090 4090 74.77 107351 (34289) 210 3865 1.90+0.55 256
C09 97 12 5245-5260 5300 1669.94 1159289 (527514) 499 5003 27.75+3.1 678
C10 55 9 4700 4730 99.64 453234 (317378) 95 4367 6.21+0.43 251
C11 94 10 4615-4630 4645 901.39 598765 (406690) 217 4397 9.05+4.3 688
C12 72 9 4240 4240 181.19 193031 (68447) 257 4006 3.87+1.2 419
C13 52 7 2955 2955 58.88 47729 (38788) 65 2774 0+0.72 329
C14 57 8 4030 4030 99.85 175211 (2491) 349 3885 6.94+0.72 321
C15 107 11 4920-4940 4985 684.59 520927 (391992) 94 4741 7.94+10 1220
C16 32 3 1475 1475 2.48 4210 (2644) 23 1394 0+0.68 232
C17 42 7 3555 3555 33.06 58071 (36026) 122 3314 0.48+0.23 174
C18 121 11 5580-5620 5645 1818.30 709067 (493603) 875 5368 54.91+35 1495
C19 61 6 3115 3120 4.38 260670 (154614) 13 2933 5.74+1.2 413
C20 53 5 2120 2120 5.89 5603 (2742) 26 2019 0+1.1 417
C21 76 8 3970 3970 15.93 5915 (4082) 29 3774 0+2.7 637
C22 43 4 2245 2245 24.04 37009 (20642) 125 2164 0.55+0.74 322
C23 92 8 4075-4085 4130 683.31 1203496 (1932) 932 3761 57.53+8.4 937
C24 84 7 3400 3400 369.05 166937 (94213) 202 3283 3.26+4.1 853
C25 38 5 2310 2310 8.55 13676 (8621) 41 2221 0+0.29 208
D01 79 5 3215 3235 8.42 186175 (173920) 14 3000 21.85+5.6 699
D02 53 4 2520 2520 2.36 926 (778) 7 2358 0+3.6 560
D03 51 3 2065 2065 4.72 2234 (1944) 11 1913 0+5.4 638
D04 72 4 2785 2785 4.93 981 (797) 8 2505 0+5.1 806
D05 65 5 3935 3935 7.60 3650 (2276) 16 3614 0+2.1 479
D06 51 3 2125 2125 33.82 20958 (16802) 53 1899 5.95+1.7 539
D07 52 4 3115 3165 6.24 161667 (105252) 20 2873 9.69+2.2 378
D08 63 4 3045 3045 2.78 1075 (704) 14 2782 0+2.7 529
D09 97 6 4120 4120 134.23 33329 (23564) 48 3834 0+9.9 1116
D10 55 5 3340 3340 1.84 567 (554) 10 3163 0+2.2 442
D11 94 5 3745 3760 36.12 175035 (152308) 21 3374 10.87+37 1233
D12 72 5 3310 3310 10.40 3200 (2583) 13 2961 0+5.4 720
D13 52 4 2535 2535 125.25 77249 (74724) 209 2226 5.17+2 447
D14 57 4 3280 3280 3.87 2088 (1517) 15 2971 0+4.7 663
D15 107 6 3990 4000 53.18 177834 (159872) 21 3778 14.45+22 1598
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Instance m k
LBbst–UBbst UBILS Time [s]

Total Decoders ILS
LBCG

Time: CG Im- CG
(or optimum) (simplified ver.) iters prover+CG Proc iters

D16 32 2 1060 1060 0.59 86 (82) 5 1090 0+3.8 253
D17 42 4 2620 2620 0.72 113 (101) 3 2375 0+0.44 217
D18 121 6 4165 4165 116.32 13134 (11829) 43 3855 0+1.62 2880
D19 61 3 2400 2400 0.89 91 (78) 4 2248 0+13 981
D20 53 3 1870 1870 11.90 4472 (4101) 21 1778 0+1.6 452
D21 76 4 3005-3050 3055 58.14 173296 (145604) 46 2791 22.93+37 1317
D22 43 2 1865 1865 2.32 1415 (1073) 14 1730 0+5.5 517
D23 92 4 3130 3135 271.50 319189 (2247) 250 2893 167.76+122 1667
D24 84 4 2710 2710 10.91 1779 (1527) 11 2495 0+42 1443
D25 38 3 1815 1815 0.90 264 (248) 4 1670 0+1.2 301
E01 85 10 4900-4910 4940 1185.24 1902721 (1988) 2274 4719 36.35+2.7 617
E02 58 8 3990 3990 168.28 318500 (31512) 963 3866 3.64+0.63 308
E03 47 5 2015 2015 2.73 1835 (1563) 9 1854 0+0.95 414
E04 77 9 4155 4220 147.24 754484 (442993) 97 3983 13.65+2.6 589
E05 61 9 4585 4675 129.03 362630 (270372) 84 4374 2.96+0.92 351
E06 43 5 2055 2055 1.16 434 (325) 6 2008 0+0.48 258
E07 50 8 4155 4155 1.81 1157 (746) 8 3980 0+0.6 311
E08 59 9 4710 4710 19.68 22727 (9743) 41 4461 0+0.81 306
E09 103 12 5805-5820 5910 1358.29 1787277 (750223) 1989 5563 75.72+5.4 841
E10 49 7 3605 3605 54.94 53152 (37059) 92 3488 0.83+0.57 288
E11 94 10 4650 4745 1242.26 570177 (396834) 249 4381 8.14+4 758
E12 67 9 4180 4245 291.19 375353 (234886) 206 4019 6.51+1.2 435
E13 52 7 3345 3345 12.09 13763 (7109) 58 3201 0+0.61 348
E14 55 8 4115 4135 51.95 692596 (325737) 144 3902 12.67+0.8 316
E15 107 9 4205 4245 96.02 470829 (311398) 35 3904 9.17+10 1113
E16 54 7 3775 3775 174.71 182444 (108856) 266 3648 2.90+0.77 417
E17 36 5 2740 2740 7.60 17789 (7689) 57 2556 0.31+0.22 173
E18 88 8 3835 3835 304.56 86326 (62437) 50 3602 0+4.7 898
E19 66 6 3235 3240 250.03 511012 (3078) 1193 3053 35.79+3.7 636
E20 63 7 2825 2825 150.60 79451 (62631) 103 2656 0.84+1.3 436
E21 72 7 3730 3735 751.43 728889 (325557) 739 3561 15.12+3.1 754
E22 44 5 2470 2470 12.52 11523 (8934) 31 2343 0+0.92 350
E23 89 8 3710 3730 878.00 446519 (291832) 249 3406 8.01+4.4 824
E24 86 8 4020 4040 361.99 420112 (319133) 129 3743 10.37+4.9 915
E25 28 4 1615 1615 1.17 702 (549) 5 1558 0+0.21 161
F01 85 5 4040 4045 321.02 464620 (5221) 298 3565 52.99+23 1478
F02 58 4 3300 3300 70.05 76695 (4277) 198 3115 5.23+3.2 541
F03 47 3 1665 1665 1.85 666 (653) 7 1532 0+8.2 623
F04 77 5 3485 3520 5.97 205626 (184284) 12 3109 4.76+12 751
F05 61 5 3605 3605 5.61 2367 (1990) 10 3295 0+4.3 835
F06 43 3 1875 1875 0.66 75 (73) 5 1790 0+2.1 459
F07 50 4 3335 3335 2.03 888 (615) 14 3121 0+1.6 421
F08 59 5 3705 3705 8.27 3575 (2941) 9 3311 0+2.4 557
F09 103 6 4730 4770 192.04 443480 (282953) 316 4310 169.79+43 1502
F10 49 4 2925 2925 1.91 656 (585) 4 2708 0+2.9 550
F11 94 5 3835 3865 19.80 176054 (144014) 14 3400 13.98+29 1403
F12 67 5 3395 3395 372.12 136637 (117032) 214 3097 5.31+5.2 642
F13 52 4 2855 2855 1.40 437 (371) 12 2584 0+3.9 766
F14 55 4 3330 3350 144.05 169874 (117560) 252 3021 8.73+3.6 577
F15 107 5 3560 3560 688.87 79514 (70945) 105 3202 2.09+43 1825
F16 54 4 2725 2725 1.41 478 (425) 4 2633 0+27 767
F17 36 3 2055 2055 0.91 279 (251) 8 1935 0+3.1 363
F18 88 4 3065-3075 3075 35.29 133803 (106839) 23 2848 43.52+36 1942
F19 66 3 2515-2525 2525 4.05 151846 (5245) 20 2317 32.63+54 1353
F20 63 4 2445 2450 3.28 87218 (81782) 14 2230 2.93+15 917
F21 72 4 2930 2930 6.21 1412 (1219) 17 2696 0+28 1318
F22 44 3 2075 2075 15.83 10647 (10433) 34 1851 0.40+13 726
F23 89 4 3005 3010 82.91 134450 (102764) 29 2754 6.71+18 1041
F24 86 4 3210 3215 652.45 150020 (131166) 255 2924 20.53+27 1464
F25 28 2 1390 1390 0.28 17 (15) 2 1356 0+0.29 168
egl-e1-A 51 5 3548 3548 1.51 779 (502) 23 3395 0+20 498
egl-e1-B 51 7 4498 4516 309.71 553520 (255829) 878 4252 26.43+4.1 370
egl-e1-C 51 10 5595 5613 460.72 755568 (435483) 771 5412 38.68+2.1 277
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Instance m k
LBbst–UBbst UBILS Time [s]

Total Decoders ILS
LBCG

Time: CG Im- CG
(or optimum) (simplified ver.) iters prover+CG Proc iters

egl-e2-A 72 7 5018 5018 40.47 24918 (14193) 43 4714 0+59 817
egl-e2-B 72 10 6317 6343 1320.87 1044208 (590194) 835 6017 48.20+14 635
egl-e2-C 72 14 8335 8335 98.75 157114 (48303) 178 8112 2.22+3.3 450
egl-e3-A 87 8 5898 5898 49.48 33026 (14741) 53 5614 0+48 1030
egl-e3-B 87 12 7744-7775 7787 1791.06 1512201 (643071) 941 7467 53.18+8.5 650
egl-e3-C 87 17 10244-10292 10309 220.10 3163038 (1186823) 154 9954 533.32+4.1 501
egl-e4-A 98 9 6408-6444 6464 649.87 840474 (371448) 357 6125 55.42+67 1082
egl-e4-B 98 14 8935-8961 9042 2158.97 2555719 (738112) 1443 8553 108.83+9.5 692
egl-e4-C 98 19 11512-11550 11626 347.69 2943840 (1285837) 614 11137 1424+3.3 469
egl-s1-A 75 7 5018 5018 257.24 111127 (68084) 150 4832 8.00+36 687
egl-s1-B 75 10 6388 6388 294.64 133135 (87867) 116 6109 9.53+9 475
egl-s1-C 75 14 8518 8518 61.02 78751 (21612) 110 8267 6.14+2.5 317
egl-s2-A 147 14 9825-9884 9890 39764.5 22756387 (14651276) 11443 9517 271+48 1620
egl-s2-B 147 20 13017-13100 13212 4368.76 14562843 (6234602) 3724 12718 836+15 1104
egl-s2-C 147 27 16425 16445 20089.1 27865308 (7674563) 8550 16183 8642+6.7 872
egl-s3-A 159 15 10165-10220 10341 5455.05 3032408 (2147235) 512 9751 100.44+60 1700
egl-s3-B 159 22 13648-13682 13738 7210.94 10176509 (4612659) 1042 13297 711.34+12 1075
egl-s3-C 159 29 17188 17209 16293.4 24677478 (7751558) 3453 16931 6335+6.5 815
egl-s4-A 190 19 12153-12268 12317 12290.2 4631560 (2689085) 835 11787 91.53+71 1526
egl-s4-B 190 27 16113-16321 16321 6810.30 13898323 (5278254) 933 15671 3451+13 1212
egl-s4-C 190 35 20430-20481 20590 705.071 19497691 (13457194) 657 20090 9114+7 1000
egl-g1-A 347 20 976907-1004864 1013682 202868 8031791 (4819108) 30348 916216 39684+803865 8554
egl-g1-B 347 25 1093884-1129937 1135065 138417 10422233 (4896198) 40218 1041850 9603+277327 6991
egl-g1-Ca 347 30 1212151-1262888 1265692 80908 14761301 (5716637) 34499 1169088 8083+102932 5854
egl-g1-D 347 35 1341918-1398958 1400828 144100 20394529 (5714699) 57792 1306688 9815+70382 5315
egl-g1-Ea 347 40 1482176-1543804 1542822 104758 38168743 (7573006) 169525 1451259 4953+36688 4821
egl-g2-Aa 375 22 1069536-1115339 1120467 166418 9685568 (3724590) 38565 1008530 100403+402740 8055
egl-g2-B 375 27 1185221-1226645 1236449 69470 11214854 (5317883) 9802 1128118 30263+257932 6773
egl-g2-Ca 375 32 1311339-1371004 1365825 56810 21190804 (7467003) 20692 1261382 6910+73086 5652
egl-g2-D 375 37 1446680-1509990 1518633 169060 45321225 (11640880) 96080 1400291 10506+22865 5463
egl-g2-Ea 375 42 1581459-1659217 1657134 453570 55355616 (12058694) 325854 1543043 11762+23447 4682

a For these instances, the values UBbst in Column 4 represent the best upper bounds known at the beginning of this study.

Unless indicated otherwise, all gaps reported in Section 6 are calculated with regard to these bounds. However, CG-P-ILS has

found the following new upper bounds: 1260433, 1542822, 1115207, 1365198, and 1657134 for egl-g1-C, egl-g1-E, egl-g2-A,

egl-g2-C, and (resp.) egl-g2-E.

Finally, one can use this table to evaluate the faster simplified decoder. Recall (from Remark 1, Section
5.2.3) that that this simplified decoder ignores the fleet size constraint, and so, it uses k times less asymptotic
running time. Column 7 provides both the total number of decoder calls and the number of simplified decoder
calls (in parentheses). If the simplified decoder reports an explicit solution with more than k vehicles, the
full decoder still needs to be run, i.e., CG-P-ILS ends up calling both decoders. To see how many times this
latter (unfortunate) situation arises, it is enough to compute the difference between the number of decoder
calls and the number of simplified decoder calls. By counting all rows, this simplified decoder is sufficient
for roughly half of the decoded permutations.

B CARP-Focused Neighbors and Stagnation Parameters in ILS

B.1 Identifying a Promising Sub-Neighborhood

We described in Section 3.3.2 a neighborhood structure of size O(m3) and we argued that it might be
necessary to prune certain neighbors and focus on a smaller CARP-specialized neighborhood. We propose
the following pruning and reduction techniques:

1. First, we observe that for the case m > 100, a neighborhood size of O(m3) is certainly prohibitively
large. To avoid this, we simply reduce the set of sequence neighbors by fixing ` = m, i.e., we generate
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sequence neighbors only by moving sequences (si, si+1, . . . sj) to the end. This leads to a O(m2) neigh-
borhood version. The next reductions below apply for both the O(m2) and the O(m3) neighborhoods.

2. The main pruning technique relies on pre-evaluating all neighbors using a heuristic cost function that
can be calculated more rapidly. Before performing any decoding, the ILS process first computes for
each neighbor s ∈ NC(s) the following non-service linking cost lnk(s′)

lnk(s′) = d(vdep, s
′
1) + d(s′1, s

′
2) + d(s′2, s

′
3) + . . . d(s′m−1, s

′
m) + d(s′m, vdep)

where d(i, j) is basically an underestimator of the distance from either end of i to either end of j or
to vdep (see below). The non-service linking cost lnk(s′) underestimates the cost of leaving the depot,
consecutively linking the edges in the order s′1, s

′
2, . . . , s

′
m (without servicing them) and returning to

depot. After this pre-evaluation, we restrict NC(s) to set N(s) ⊆ NC(s) with the lowest nsize values
of the above linking cost, where nsize is a parameter that allows one to change the neighborhood to
any desired size.5

3. Another technique relies on pruning potential neighbors with very far consecutive edges. We prune any

neighbor s′ for which there is some i ∈ [1..m−1] such that d(s′i, s
′
i+1) > 2 · lnk(sbest)m+1 , where lnk(sbest) is

the non-service linking cost of the best visited solution sbest. We mention a special case: if the average

linking cost lnk(sbest)
m+1 of sbest is very low (less than 1), this reduction would be very imprecise and it is

skipped.
4. The last reduction technique simply prunes all neighbors that swap two different routes (sequences) of

the current solution. Such neighbors would only artificially increase the neutrality of the search space.

We still need to formally define the above edge-to-edge distance function d. Given any e1, e2 ∈ [1..m],
d(e1, e2) should quantify how far edge e1 is from edge e2. We observed that typical optimal solutions s∗

verify the following property: any consecutive edges s∗i and s∗i+1 are either relatively close to each other or

they belong to different routes. Based on this, d(e1, e2) is the minimum of: (i) the shortest path between
either ends of e1 and e2 and (ii) the shortest path between any end of either edge and the depot. We observe
that point (ii) is motivated by the possibility of finishing a route with edge e1 and starting a new one with
edge e2. For instance, if e1 is close to the depot, then we consider that e1 could be easily followed by any
distant edge e2, because e1 and e2 can easily belong to different routes.

B.2 Parameters for Detecting Stagnation and Recurrent Looping

As hinted in Section 2.1, the perturbation is automatically triggered after a number of maxNeutralIt
iterations with no variation of the objective value. This represents the condition for detecting a stagnation,
i.e., a situation in which the search process is stuck looping on a plateau. The value of maxNeutralIt
depends on the cost f(s) of the current solution. As long as the current f(s) does not deviate by more than
3% from the cost f(sbest) of the best visited solution sbest, we are on a “base” case. We set maxNeutralIt at
a “base” value of maxNeutralIt = 10+20·

⌊
m
200

⌋
. The last term comes from the fact that the largest instances

can have larger plateaux. As soon as f(s) > 103%f(sbest), we consider the search process explores a lower
quality area and maxNeutralIt is divided by 2. More exactly, in this case, we update maxNeutralIt ←
max

(
maxNeutralIt

2 − fdev(s)/3, 1
)
, where fdev(s) =

⌈
f(s)−f(sbest)
f(sbest)

· 100
⌉
. We observe that this formula allows

the perturbation to be triggered immediately if f(s)� f(sbest). Furthermore, CG-P-ILS can apply stronger
perturbations on lower quality solutions, by injecting in such solutions more than one route from P: the
exact number of sequences is set to 1 + dfdev(s)/5e.

Regarding the recurrent looping state (recall Section 3.3.3.1), we detect it by the following approach.
We consider a reference iteration itrf and, as long as the solution sit at current iteration it verifies
f(sit) ∈ [0.9f(sitrf), 1.1f(sitrf)], we keep itrf as reference iteration. As soon as this condition is not
verified at some iteration it, we update itrf← it. The recurrent looping state is declared at any iteration
it such that it− itrf > 2 ·maxNeutralIt.

5After preliminary experiments, we we set nsize = m · k (corresponding to a neighborhood linear in the number of edges
and the number of vehicles) for m < 100, or msize = 0.001|NC(s)| otherwise.
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Recall that the detection of such looping state triggers the CG improver. Since the CG improver is
a blocking operator in ILS, the above condition was designed so as to avoid calling the CG improver too
frequently (this would slow down the search). However, to be certain that such problems do not arise,
we limit the total time spent on the CG improver to 100000s; this limit was reached only on the instance
egl-g2-A. It is not difficult to make the algorithm adapt the above parameters so as to keep a good balance
between the time spent on the ILS and the time spent on the CG improver.

C Exact and Heuristic Cycle Avoidance in the CG Pricing

Cycling is a recurrent issue in CG pricing algorithms based on Dynamic Programming (DP). The problem

comes from the fact that a DP state S can be reached via a transition S′
e−→ S by servicing an edge e

already serviced during the transitions that led to state S′. A simplest cycle example consists of a sequence of
transitions such as S

e−→ S′
e−→ S. Using the notations from Section 4.1, observe that a state S = (vb, q+qe)

can indeed be constructed by servicing edge e = (va, vb) from state S′ = (q, va) without checking if edge e
was not already used to construct state (q, va).

Let us interpret the states as vertices of a directed graph whose arcs encode precedence relations between
states, i.e., an arc S′

e−→ S indicates that state S can be reached from S′ by servicing e. As such, if Step
3.(a) (recall the Algorithm from Section 4.1) finds a new transition to an existing state S = (vb, q+ qe), e.g.,
by finding f(va, q) + de − ye = g(vb, q + qe), there can be more than one arc that leads to S. To service e
from state S, one should ensure there is at least one path towards S that does not use e.

We first present a simpler inexact technique for avoiding cycles with length up to 20. It is only used by
the CG improver that does not need to converge, but that should avoid sending routes with cycles to the
ILS process. The main idea is to construct a simplified version of the above graph by keeping only one arc
entering each state S, i.e., the discovery of a second arc leading to S is ignored. As such, this simplified
graph has a unique path towards each state S. We then simply record the last 20 edges serviced by this path
to S and we forbid servicing on S any of these 20 edges, i.e., these edges are considered forbidden in S. The
implementation of such routine involves a constant factor per iteration, and so, the theoretical complexity
of the pricing algorithm does not increase.

We now present the exact 2-cycle reduction used by the main CG process. To guarantee the correctness
of the lower bound returned at the end of the CG convergence, the pricing algorithm needs to remain exact.
For this, we need to consider that an edge e is forbidden (not to be serviced) in S only if it arises on every

path of length 2 leading to S. For instance, if the only path towards S is S2
e2−→ S1

e1−→ S, then e1 and e2

are forbidden in S; if there exists an alternative path S′2
e′2−→ S1

e1−→ S, then only e1 is forbidden in S.
This approach has a computational and memory cost: it might produce more sub-states for the same

v ∈ V and q ∈ [1..Q]. Indeed, if two sub-states S′ and S for the same (v, q) have different forbidden edges,
one should consider recording both of them (even if f(S′) > f(S)). By this duplication process, we obtain
a larger graph but with a unique entering arc per sub-state. Under these conditions, we can then simply
associate to each sub-state S a list of edges that are forbidden (can not be serviced) in S: they are exactly
the edges of the unique path of length 2 leading to S.

However, the number of sub-states that have to be created for the same (v, q) is at maximum 3. We show
this by observing the following. If a new sub-state Snew has a lower quality than an existing state S for the
same (v, q), then Snew can be useful only if there exists some edge forbidden in S and not forbidden in Snew.
More generally, a lower quality state Snew is only useful if it reduces the size of the set of edges forbidden
in all sub-states already created on (v, q). This size reduction can happen at maximum 3 times, because the
set of edges forbidden in (v, q) can have at most of 2 elements, i.e., at most the edges of the unique 2-length
path leading to S. After at most three size reductions for the same (v, q), the set of forbidden edges in (v, q)
becomes empty. In such case, there is always a sub-state in (v, q) that allows Step 3.(a) to service any new
edge.
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D Example of a State Graph and Decoder

For the sake of clarity, let us exemplify the construc-
tion of a state graph GS used in Section 5.2.1. The
graph G in the right figure has four required edges of
total demand q1 + q2 + q3 + q4 = 15 and Q = 10. For
any u, v ∈ V , the length of edge {u, v} is given by the
Manhattan distance, i.e., |xu − xv|+ |yu − yv|, where
(xu, yu) and (xv, yv) are the coordinates of u and v.
Observe the depot is at distance 6 from any other ver-
tex. The state graph GS is provided below: the open
states are depicted as squares in perspective and the
depot states in ovals. Let us exemplify some arcs of
GS :

1. the very first route needs to start with edge 1:
traverse a distance of 6 to reach either end of
edge 1 and a distance of d1 = 4 to service it, end-
ing up either in [1 : 0] or in [1 : 1], hence two arcs
of weight 10 exiting vertex ‘‘start st. [0]’’;

2. The arc [1 : 0]→ [2 : 0] represents a vehicle move
from [1 : 0] to [2 : 1], followed by a service of edge
2, thus a cost of spath

(
[1 : 0], [2 : 1]

)
+d2 = 8+8;

3. The red path from “start st. [0]” to “depot
st. [3]” represents the shortest route that starts
at the depot, services {1, 2, 3} and returns to the
depot (total cost 10 + 8 + 4 + 6 = 28).

depot

edge 1
(q=3)

edge 2 (q=6)

edge 3
(q=1)

edge 4(q=5)

1

2

3

4

[1:0]

    State Graph  G

[1:1]

[2:0] [2:1]

[3:0]

[3:1]

[4,0] [4:1]

    Input Graph G

S

1:0 2:0

1:1

3:0 4:0

2:1 3:1 4:1

8+8

12+8
4+8

0+8

12+2

4+2
2+2

11+2

6+6

18+6
10+6

12+6 end  
st. [4]

depot st. [1] depot st. [2] depot st. [3]

start 
st. [0]

10

10

The red and the blues paths in GS represent arcs between depot states. For instance, we can say there
is a (red) arc between [0] and [3] of weight 28 and a (blue) arc between [3] and [4] of weight 18. Both these
arcs encode complete routes: the first one services edges {1, 2, 3} and the second one services {4}. Based on
them, one can compute the shortest path from [0] and [4], and find an optimal solution of cost 28 + 18 = 46
that services the required edges in the order 1, 2, 3, 4.
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